NOTES ON SET THEORY

1. INTRODUCTION

Throughout mathematics, sets are used as one of several fundamental types of mathematical
objects, along with numbers, ordered pairs, functions, etc. But it turns out that sets are special, in
that every other type of mathematical object can be “compiled” into sets. For example:

e A function f: X — Y can be “compiled” into the set of ordered pairs {(z, f(x)) | z € X},
sometimes called its graph; see Definition 2.42 and Remark 2.47.

e An ordered pair (z,y) can be “compiled” into the set {{z},{z,y}} (among many other
possibilities); see Definition 2.30 and Exercise 2.31.

e The natural number 3 can be “compiled” into {0, 1,2}, where 2 := {0,1}, 1 := {0}, and

0:= @ = {}; thus
3={H 0L

In this role, set theory serves as the “machine language” (or if you prefer, “assembly language”)
underlying the higher-level language of ordinary math. Part of the goal of this course is to introduce
this “machine language” and the “compilation” process from higher-level math.

Aside from serving as a low-level foundations for the rest of math, set theory also studies several
mathematical concepts of fundamental importance in their own right, such as induction, cardinality,
and choice. You’ve surely encountered instances of these concepts already in other areas; in this
course, we will define them and develop their basic theory in full generality.

2. AXIOMS OF SET THEORY

Informally, a set A is a collection of objects. Given A and some other object x, you are allowed
to ask whether or not z is in the collection A, denoted

z € A.

Moreover, this is the only feature of a set: it is completely determined by what all of its elements
are. This is captured by the

Axiom 2.1 (Extensionality). For two sets A, B,
A=B < Vz(r€ A < z € B).

The word “axiom” means that this assertion is assumed, rather than proved as a theorem would
be. Every theorem in math must be proved from simpler assertions; we must necessarily start
somewhere, with some basic statements we consider so intuitively unobjectionable that we’re willing
to take them on faith, hence declare them to be axioms.

Similarly, we must take some basic mathematical concepts as undefined in terms of simpler ones.
Recall also that in set theory, all other mathematical objects are defined from sets. Thus, formally:

Definition 2.2. The word set is a synonym for “mathematical object”, and is left undefined.
There is a binary relation € between sets, also undefined. That is, for any sets (i.e., mathematical
objects) x, A, we can connect these two “nouns” via the “verb” € into the “complete sentence”

x € A.

This complete sentence does not “mean” anything; the only thing we know about it is that the

Axiom of Extensionality holds (not because of any justification, but only because we said so).
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2.A. Comprehension. Conceptually, the Axiom of Extensionality tells us that sets turn assertions,
i.e., “complete sentences”, into objects, i.e., “nouns”. In math, as in English, these are two entirely
distinct grammatical categories:

e “It snowed a lot this winter” is a complete sentence.

e “That it snowed a lot this winter” is not a complete sentence, but rather a noun (phrase).

e “It is true that it snowed a lot this winter” is again a complete sentence, with the same
meaning as the first sentence.

e “It is false that it snowed a lot this winter” is also a complete sentence, with an entirely
different meaning.

e “I know that it snowed a lot this winter” is also a complete sentence, with a third meaning.

Similarly:

e R (the set of real numbers) is a noun.

e “z € R” is a complete sentence (that depends on the variable x).

e “x ¢ R” is a complete sentence with a different meaning.

The Axiom of Extensionality tells us that a set A (noun) is completely determined by the meaning
of the assertion “x € A”. What about the reverse procedure, the mathematical analog of the English
word “that”, to turn an assertion (depending on a variable) into a set?

Axiom 2.3 (Comprehension). For any mathematical assertion ¢(x) depending on a variable z,
there is a (unique, by Extensionality) set A such that

Ve (r € A <= ¢(x)).
This set A is denoted
{z | ¢()}.

Here, by a “mathematical assertion”, we mean an assertion that can be expressed using the basic
binary relation €, as well as the basic equality relation =, using the usual logical operations of
“and”, “or”, “not”, 34, and V. The variable z is allowed to appear in this expression, as are any
previously known mathematical objects (i.e., sets).!

Example 2.4. @ is an abbreviation for {z | false}, where “false” is a nullary “or”, or if you prefer,
some arbitrary trivially false statement, such as “x # z”.
Similarly, for finitely many objects z1,...,zy, let {x1,..., 2} :={x |z =21 or -+ or x =z, }.

Example 2.5. For a set X and assertion ¢(x), define the abbreviation
fre X | )} ={a|zeX & o)),
Example 2.6. For two sets A, B, define the abbreviation
ACB <= Vz(r€ A = z€B).
Then for a set X, its powerset is
PX)={A|ACX}={A|Vz(z € A = z € X)}.
1Formally7 ¢ should be a first-order formula in the signature of set theory {€}, with some free variables, and with

other sets assigned to all variables except for x. That is, if y1,...,y, are the other free variables except x appearing
in ¢, then the “Axiom of Comprehension” is really an axiom schema, consisting of the sentence

Yyi - -Vy, JAVz (r € A <= ¢)

for each such formula ¢.



Example 2.7. If A is a set of sets (this allows us to avoid having to define what an “indexed
collection of sets (A;)ie;” means, for now; see Definitions 2.59 and 2.60), then define

UA={z|JAc A(z € A)},
NA={z|VAe A(x € A)},
where as usual,
JAcA(-+) = JA(Ac A & ),
VAc A(-++) == VA(Ae A = --).
In particular, if A = {A, B} (per Example 2.4),
AUB :=J{A, B},
ANB:=({A,B}.
Definition 2.8. Naive Set Theory consists of the Axioms of Extensionality and Comprehension.

The above examples, along with the brief descriptions from the Introduction of how other standard
mathematical notions may be “compiled”, should help to convince you that all of “normal” math,
i.e., outside of set theory, may be “compiled” into Naive Set Theory. Unfortunately, Naive Set
Theory is too powerful for its own good:

2.B. Cantor’s theorem and Russell’s paradox.

Theorem 2.9 (Cantor). Let X be a set, f: X — P(X) be a function. Then f is not surjective,
i.e., there is an A € P(X) such that for all z € X, f(z) # A.

Of course, we have not yet reduced the notion of “function” to sets — see Definition 2.42. Thus,
for now, functions should be understood in the informal sense you’re used to from “ordinary” math.

Before giving the one-line proof, we first explain the idea. We want to find a subset A C X which
does not equal any f(z), which by Extensionality means that A, f(x) must differ on the membership
of at least one element. Luckily for us, we have just enough elements of X to allocate an element
for A, f(x) to differ on for each x: namely, we may allocate z itself. Here is a picture:

//

T Y z

X

We visualize the set X as a (horizontal) line, and each of the subsets f(z) C X as a subset of the
same (vertical) line, so that the entire function f is represented as a subset of the plane X2. The
set A is defined as the subset of the (diagonal) line consisting of precisely the elements not on each
vertical line; thus it cannot equal any of the vertical lines. This proof technique is therefore called
diagonalization.

Proof. Let Ac={x € X |z ¢ f(x)}. Thenforallz € X,z € A <= x & f(x),s0 A# f(x). O

Corollary 2.10 (Russell’s paradox). Naive Set Theory is inconsistent (self-contradictory).
3



Proof. Let V' = {z | true} be the set of all sets (where as in Example 2.4, “true” is a nullary “and”,
or if you prefer, some trivially true statement such as © = z). Note that V' = P(V) (since all objects
are sets). Thus id : V — V = P(V) is a surjection, contradicting Cantor’s theorem. O

If we “plug in” the above proof of Cantor’s theorem into this proof, we get:
Proof. Let A:={x|x g x}. Then Ac A < A ¢ A, a contradiction. O

Note that this latter proof shows that Comprehension, rather than Extensionality, is the problem.
Namely, Comprehension is too “absolutist”: there are general principles of logic? which tell us that
in any reasonable formalized “mathematical universe”, there will always be informal “meta-concepts”
that our universe cannot “see”. In set theory, this takes the form of “properties” ¢(x): each such
property does define an informal “meta-collection” of mathematical objects; but Russell’s paradox
says that this collection cannot itself always be an object in the mathematical universe.

Definition 2.11. A class is an informal collection {x | ¢(x)} defined by a property ¢(x). That is,
“class” is roughly synonymous with “property” /“mathematical assertion” / “first-order formula” ¢(x),
except that we think of it as the collection defined by ¢(x), rather than the expression ¢(z) itself.?
We say that a class {z | ¢(x)} is a set if that instance of Comprehension holds, i.e., there is a
(unique, by Extensionality) set A such that Vz (x € A < ¢(z)).
A class which is not a set is called a proper class. For example, the class in the second proof of
Russell’s paradox above is a proper class.

2.C. The theory ZF~ — Infinity. The most common way* out of Russell’s paradox is to restrict the
Axiom of Comprehension so that only “sufficiently small” classes form sets.

V= {z | true}

(2.12)

Intuitively speaking, we allow ourselves to build new sets whose “sizes are bounded” in terms of
preexisting ones. For example,

2e.g.7 the Godel incompleteness theorems, and Tarski’s undefinability of truth

3Warning: one can easily formalize these “expressions” into mathematical objects, e.g., finite strings of symbols
such as A,V,3, €, etc. But it is then impossible to define, within the language of set theory itself, what such a
formalized expression ¢(z) means; this is known as Tarski’s undefinability of truth.

4Two other approaches, which we will not discuss in detail, are to (a) declare the formula “z ¢ x” appearing in
Russell’s paradox to be invalid, because the elements of a set should always be “simpler” than the set itself, leading to
a theory called Quine’s New Foundations; or (b) disallow the formula “z ¢ x” because it mentions negation without
restricting the size of the defined class, leading to a theory called Positive Set Theory.
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Axiom 2.13 (Powerset). For any set X, the class P(X) = {4 | A C X} from Example 2.6 is a set.

This comprehension is allowed, because even though the size of P(X) will always be bigger than
that of X (formally, by Cantor’s theorem; see Theorem 4.35), the size only grows by a “controlled”
amount. Similarly,

Axiom 2.14 (Union). For any set A, |JA = {z|3A € A(z € A)} from Example 2.7 is a set.
Axiom 2.15 (Finite Sets). For any z1,...,2,, {1,...,2,} from Example 2.4 is a set.’

As is typical throughout math, instead of assuming an n-ary “combining” operation, it is enough
to assume the nullary and binary cases:

Axiom 2.16 (Empty Set). @ = {x | false} (Example 2.4) is a set.

Axiom 2.17 (Pairing). For any z,y, {z,y} ={z | 2 =2z or y = 2z} is a set.

Proof of Finite Sets from Union, Empty Set and Pairing. By induction on n.® For n = 0 this is by
Empty Set. If {x1,...,2,} is a set, then {z1,..., 2y, zpn+1} = U{{z1, .. 2}, {1, 201t} O

The preceding axioms all allow us to build new sets that are slightly bigger than existing ones.
We now introduce two axiom schemas that say directly that a class smaller than a set is a set.

Axiom 2.18 (Restricted Comprehension/Separation). Any class contained in a set is a set.

That is, for any property ¢(z) (as in the original Comprehension 2.3) and set X, if {z | ¢(z)} C X,
meaning Vx (¢(z) = = € X), then {z | ¢(x)} is a set.

Equivalently, for any ¢(x) and set X, the intersection X N{z | ¢(z)} = {x € X | ¢(x)} from
Example 2.5 is a set; this is depicted in the above picture (2.12).

Proof that these two axioms are equivalent. Assuming that any class contained in X is a set, then
{reX|o@)}={v[zeX & ¢(x)}

is a class contained in X, hence is a set.
Conversely, assuming {x € X | ¢(z)} is always a set, we have

{z]p(x)} CX <— Vz(p(x) = xz€X) by definition of C
— Vz(o(z) <= xz€ X & ¢(x))
— {z] o)} ={r e X |ox)} which is a set. O

Example 2.19. V = {z | true} is not a set. If it were, then every Comprehension {z | ¢(z)} would
reduce to the Restricted Comprehension {x € V' | ¢(x)}, recovering in particular Russell’s paradox.

Example 2.20. For any nonempty set A, (JA={z | VA€ A(z € A)} from Example 2.7 is a set.
Proof. Fix Ag € A. Then
NA={zre€ Ay |VAe A(x € A)},
since for any =,
VAc Az € A) < x€ Ay & VAc A(x € A). O
Remark 2.21. For A = &, the same definition of [].4 would yield the entire universe V.
In mathematical practice, one typically only intersects subsets A C X of a fixed, context-dependent

ambient set X (e.g., closed subsets of a topological space, subgroups of a group, ...). In such
contexts, the “right” convention is to define the nullary intersection (@ := X.

5This would be an axiom schema.
6Formally, this induction is taking place in the metatheory, i.e., this is really a proof schema: for each n, we get a
different proof of the corresponding axiom in the axiom schema of Finite Sets.
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While Restricted Comprehension says that any subclass of a set is a set, one might expect more
generally that a class which “injects” into a set ought also be a set. Relatedly, one might also expect
that a class which admits a “surjection” from a set ought also be a set. One needs to be careful
about what this “injection” /“surjection” means: if we assume it is given by a function which is
already a set, then that more-or-less defeats the purpose, since this function will already be an

“upper bound” on its domain/range (see Exercise 2.40). Hence, we need to work once again with
“meta-collections”, i.e., properties, this time of pairs:

Axiom 2.22 (Replacement). Let ¢(x,y) be a property of two variables z,y (and possibly depending
on other known objects). For any set X, if

Ve e X Vyvz(o(z,y) & ¢z, 2) = y=2),

“J at most one y s.t. ¢(z,y)”

then {y | 3z € X ¢(x,y)} is a set.

This axiom is quite powerful:

Exercise 2.23. Prove Restricted Comprehension from Replacement and no other axioms (except
Extensionality).

Exercise 2.24. Another common version of Replacement uses “3!” instead of “3J at most one”.

(a) Prove Restricted Comprehension from this version of Replacement and Empty Set.
(b) Prove that the two versions of Replacement are equivalent, using only Empty Set.
(c) Prove yet another version of Replacement that uses “3 at most a set of”:

Ve e X JAVy (¢p(x,y) = y € A).
(You may use Extensionality and all axioms from this subsection.)
Exercise 2.25. Prove Pairing from Replacement, Empty Set, and Powerset.

Definition 2.26. The set theory ZF~ — Infinity consists of the Axioms of Extensionality (2.1),

Powerset (2.13), Union (2.14), Empty Set (2.16), Pairing (2.17), and Replacement (2.22); we thus
also have Restricted Comprehension (2.18) by Exercise 2.23.

The awkward name with two minus signs is because this theory is lacking two important axioms,
Foundation and Infinity, from the theory known as ZF that will be introduced later; see Axioms 3.100
and 3.152. Adding the further Axiom of Choice 3.203 yields the set theory known as ZFC, which is
widely accepted as the “standard” foundations for mathematics.

Extensionality Foundation
Powerset <
Union |
(2.27) Empty Set ;;;
' Pairing 2 ZFe

Restricted Comprehension

Replacement Choice




2.D. Ordered pairs, Cartesian products, relations, functions. We now begin to discuss
the process of “compiling” other types of commonly used mathematical objects into sets. Broadly
speaking, this goes as follows. For the given type of object, we formulate some axioms for it as
if it were primitive, that capture everything we need to know when using this type of object in
mathematical practice. We then “encode” this type of object into sets, and then prove the desired
axioms from the set theory axioms. There may be many reasonable such “encodings”, in which case
it doesn’t matter which one we pick: once we’ve proved the axioms, we know all we need to use the
definition in practice, and never need to think about the encoding again.”

For ordered pairs, we need to know two things about them in practice:

(2.28) For any mathematical objects z,y, there is another object called the pair (z,y).
(2.29) (“Extensionality for pairs”) The only feature of an ordered pair is its two coordinates:
(a,b) = (c,d) <= a=c & b=d.

Definition 2.30 (Kuratowski). For any x,y, let (z,y) := {{z}, {z,y}}.
Proof of (2.28). This is indeed a set, by the Axiom of Pairing (2.17) applied thrice. O
Proof of (2.29). <= is obvious (note: unlike in Extensionality for sets (2.1), where = was the
obvious direction®). Now suppose (a,b) = (¢,d). Then {a} € (a,b) = (c,d) = {{c}, {c,d}}, whence
{a} = {c} or {¢,d}, both of which contain ¢, whence ¢ € {a}, whence ¢ = a. So

{{a},{a,b}} = (a,b) = (¢,d) = (a,d) = {{a}, {a, d}}.
If @ = b, then the LHS is {{a}}, hence so is the RHS, hence {a,d} = {a}, hence d = a = b.

Otherwise, {a,b} in the LHS must equal {a,d} in the RHS (since it is not {a} which does not
contain b), hence b € {a,b} = {a,d}, hence b = d (since b # a). O
Exercise 2.31. Which of the following encodings also work, i.e., also satisfy (2.28) and (2.29)7
(a) (z, {z,y}
{z,{y}}
{0 e}, {1,y}}
P(y)}

, ( ), P(y) \ {2}}
(f) (z,y) = {x,{z,y}} [Hint: this depends on whether the Axiom of Foundation (3.100) holds.]

Definition 2.32. For two classes X, Y, their Cartesian product is
XxY:={(z,y) |lzeX &yeY}={p|reXTyeY(p=(z9))}
Proposition 2.33. If X,Y are sets, then so is X x Y.

x,
z,

(b) (2,y
(©) (,y
(d) (z,y
(e) (z,y

y):
) :
) :
) :
) :

8

/—Am—»a,—»a,—»a

Proof. For each x, for each y, we have a set (z,y); thus by Replacement (applied to ¢(y,p) <=
p=(z,y)), we have a set {a} xY ={p| Iy € Y (p = (z,y))}; thus by Replacement again (applied
to(z,s) <= s={p|IyeY (p=(z,9))}), we have a set

{{pl3yeY(p=(z,9)}zeX}
now take Union. O

7Ag‘ain7 a computer analogy is helpful: the only type of data on (modern) computers is bytes, i.e., strings of 8 bits.
On my computer, the letter ‘M’ is encoded as the byte 010011012, while on yours it may be 110101002; in programming
practice (that’s not super-low-level, e.g., hardware drivers), we never need to think about these encodings.

8There is a philosophical distinction between the notions of sets vs. pairs (other than that only the former can serve
as a foundation for mathematics). Pairs are known as a positive type of object, in that they are originally specified by
how they are created: by combining two other objects (2.28). Thus, the nontrivial direction of Extensionality for
pairs says that if two pairs are the same, then they must have been created the same way. By contrast, sets (in the
set-theoretic sense) are a negative type of object, being specified by how they may be used: by asking if some z is € it.
The nontrivial direction of Extensionality says that if two sets look the same when used, then they are the same.
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Exercise 2.34. Give a different proof that X x Y is a set, using Powerset instead of Replacement,
that however has the disadvantage of depending on our specific chosen encoding of pairs.

Definition 2.35. As indicated above, if F(x) is a mathematical expression (rather than assertion)
that depends on a variable x, and X is a set, we use the shorthand

{F(z) |z e X} = {y| 3w e X (Fx) =y},

which is a set by Replacement. Here, by “mathematical expression”, we really mean a “meta-
function”, i.e., its graph is a “meta-relation” defined by a property ¢(z,y) as in the statement of
Replacement (2.22).

Definition 2.36. A set (or class) R is a binary relation if each of its elements is an ordered pair
(x,y), in which case we write

r Ry <= (z,y) € R.
Conversely, if i< is a symbol that already denotes some binary relation, then we abuse notation by
also using 1 to denote the class defined by the above. For example,

€ ={(z,y) |z ey}
Exercise 2.37. Show that this is a proper class.
Definition 2.38. The domain and range of a binary relation R are
dom(R) := {z [ Iy ((z,y) € R)},
mg(R) = {y | 3z ((z,y) € R)}.
Proposition 2.39. If R is a set, then so are dom(R), rng(R).

Proof. By Replacement: dom(R) = {z | 3p € R3y (p = (z,y))}, and for each p, there is at most
one z such that Jy (p = (z,y)), by “Extensionality for pairs” (2.29); similarly for rng(R). O

Exercise 2.40. Give another proof using Union instead of Replacement, assuming the Kuratowski
encoding of pairs (cf. Exercise 2.34).

Corollary 2.41. If R is a binary relation and also a set, then it is a subset of X x Y for some sets
X,Y. In that case, we call R a binary relation between X,Y.

Proof. X :=dom(R), Y := rng(R) works. O

Definition 2.42. A relation f is a function if for each z, there is at most one y such that = f y.
If such unique y exists, then we denote it by f(z).

If f is a function, dom(f) = X, and rng(f) C Y, then we say that f is a function from X to
Y, denoted f: X — Y, and call Y a codomain of f.

Outside of set theory, functions are usually treated as a primitive type of object, distinct from
sets, much as pairs are. The following axioms dictate how we use functions in practice:9
(2.43) If f: X = Y is a function, and = € X, then we get an object f(z) € Y.
(2.44) (“Extensionality for functions”) For two functions f,g: X — Y, we have
f=g9 & Vo e X(f(x)=g(x)).
(2.45) (“Comprehension for functions”) To define a function f: X — Y, specify for each z € X a
unique f(z) € Y. That is, specify a property ¢(z,y) such that Va € X 3ly € Y ¢(x,y).

Exercise 2.46. Verify that the encoding of functions as sets of pairs satisfies these axioms.

9The form of these axioms shows that functions are a negative type, like sets; cf. Footnote 8.
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Remark 2.47. Unlike with pairs (see Exercise 2.31), this standard encoding of functions subjectively
feels fairly “canonical”, and does not involve the same level of trickery as the encoding of pairs.

Nonetheless, we should still keep in mind the distinction between the concept of a function, which
is still best thought of as primitive, and its encoding as a set of pairs. To emphasize this distinction,
people usually define the graph of a function f: X — Y to mean

{(z, f(2)) | © € X},

which formally is the same as f under the standard encoding, but explicitly indicates that we are
thinking of f as a set of pairs rather than a function.

Definition 2.48. For two classes X, Y,
YX .= {f| fis a function X — Y}.

This is an abuse of notation: there are several other operations denoted the same way in set theory
(see Remark 2.67, Exercise 3.172, Remark 4.32). Less ambiguous notations people sometimes use
include XY, Fun(X,Y). We think these are too ugly and/or verbose, and so will depend on context
for clarity.

Corollary 2.49 (of Definition 2.32). For sets X,Y, so is YX.
Proof. YX is a set of sets of pairs, i.e., YX C P(X x Y). O

We assume you are familiar with other standard concepts related to functions, and will have no
difficulties formalizing them into set theory:

Definition 2.50. For relations R C X x Y and S CY x Z, their composition is
SoR:={(z,2) e XxZ|JyeY(xRyS =z}
(shorthand for {pe X x Z |z € XIyeY Iz Z(p=(x,2) & xRy & y S 2)}).
(As usual, the order is “wrong”, ultimately so that we can write f(x) rather than (z)f.)
Exercise 2.51. Prove that if f: X — Y and ¢g: Y — Z are functions, then sois go f : X — Z.

Definition 2.52. The identity function is (as a class of pairs) the same as the equality relation
=. The identity function on X is its restriction to X, i.e., intersection with X x X.

Exercise 2.53. Prove that relation composition is associative and has id as identity element.

Example 2.54. The inverse of a binary relation R is
R~ = {(y,2) | (z,y) € R}.
Exercise 2.55. Let R C X XY be a binary relation.
(a) What does R~! o R C idx mean?
(b) What does R~! o R D idy mean?
(c) Prove that R is a function X — Y iff R"' o R ??idx and Ro R™! ?? idy, where each ?? is
either C or DO (which?).
(d) Conclude that for a function f: X =Y, f~!:Y — X is also a function iff Yy € Y Jlz €
X (f(x) =y), i.e., f is a bijection.
(e) Show that a function f: X — Y is injective, resp., surjective (defined the usual way), iff
one of the other inclusions in (c) above holds (which?).

Exercise 2.56. For a relation R C X X Y, define the image R[A] C Y of a subset A C X,
specializing to the case when R is a function; R~1[B] C X is then the preimage of B C Y.
Show that taking image under a relation preserves arbitrary unions (first write what this means),
and preserves arbitrary intersections iff R = f~! for a function f:Y — X.
9



2.E. Independence of encoding, indexed products and (disjoint) unions. Bijections provide
one way of formalizing the idea that the choice of encoding of ordered pairs, functions, etc., is
irrelevant:

Proposition 2.57. Let (,) and (,)’ be two ways of encoding ordered pairs, both obeying the axioms
(2.28) and (2.29). Then there is a bijection F' (between the classes of ordered pairs encoded either
way) converting between these encodings, namely

F(z,y) = (z,y)"

In particular, for any sets (or classes) X, Y, letting x, x’ denote the Cartesian products defined
using either encoding, the above bijection between all pairs restricts to a bijection

F: XxY—XXY
(z,y) — (z,y)"
Proof. We may certainly define the relation F' by the above formula, i.e.,
F={(p,p) | 32,y (p=(z,y) & p' = (2,9)")}.
To check that F' is a function, we need to know
(p,11); (p,13) € F = ply = ph.

From (p,p)) € F, we get that p = (z1,y1) and pj = (z1,y1) for some z1,y;, while from (p,p}) €
F, we get that p = (x2,y2) and p, = (z2,y2)" for some (a priori different) 2, y2; but by the
extensionality axiom (2.29) for (,), from (x1,y1) = p = (x2,y2) we get £1 = x2 and y; = y2, whence
P = (71,y1) = (22,92) = ph. Similarly, F~! is a function. O

Exercise 2.58. Similarly, for any two ways of encoding functions obeying (2.43) to (2.45), show
that we have a bijection YX 22 YX/ between the respective sets of functions, for any two sets X,Y.

Even if we accept the standard (Kuratowski) encoding of pairs, note that there are two obvious
ways to build triples (and higher n-tuples) from pairs:

(z,y, Z)l = ((m,y),z),
(l‘,y, Z)Q = (:‘U’ (y,z))

More generally, in areas such as real analysis we would want to consider “oco-tuples”, i.e., infinite
sequences (zg, z1,...); in fact, we may as well consider arbitrary indexed families (z;);e;s.

Definition 2.59. An indexed family (x;);c; over a set or class [ is another name for a function
f with domain I, where x; is another name for f(7).

Definition 2.60. For an indexed family of sets (A;);cs, define the indexed union
Uier Ai = U{Ai | i € I}
(constructed via the Axioms of Union and Replacement).

Exercise 2.61. Show that the concepts of indexed union and union of a set of sets are interchangeable:
conversely, for a set of sets A,
UA=Usen A

Definition 2.62. For an indexed family of sets (X;)ics, its indexed Cartesian product [[;.; X;
is the set of all indexed families (x;);c; where each z; € Xj.

Proposition 2.63. If (X;);cs is a family of sets indexed over a set I, then [[,.; X; is a set.

Proof. Hie[ X, C (Uiel Xi)l. O
10



We now have several ways of encoding n-tuples:

Definition 2.64 (preliminary; see Axiom 3.152).

0:=g,

1= {0},
2:={0,1},
3:=4{0,1,2},

Exercise 2.65. Let n > 2. We may encode n-tuples as
(0, - 2n-1) = (((w0, 21), 2), . . . Tn—1)

(or any other way of writing the parentheses). We may also regard the tuple as an indexed family
over the domain n. Show that there is a canonical bijection converting between these encodings.
For example, for n = 3, for any sets Xy, X1, Xo, we have bijections

(X() X Xl) X XQ = H'L’ES Xl = XO X (Xl X XQ)

Remark 2.66. Of course, we could not have originally defined ordered pairs via indexed families,
since functions were defined in terms of ordered pairs. But the above encoding still works for n = 2,
given the concept of function, yielding another encoding of ordered pairs.

Remark 2.67. When (X);c; is a constant family of sets, note that our definition of J],.; X agrees
with the set of functions X! (Definition 2.48). In particular, X" is the set of functions n — X,
which is in canonical bijection with (not equal to) ((X x X) x ---) x X.

For “canonical” bijections such as those above, it is common in informal mathematical practice
to treat them as equalities, by “identifying” elements in both sets. An important feature of actual
equality is (one direction of) Extensionality: equal things should be interchangeable in all contexts.
Of course, the Axiom of Extensionality tells us that this literally holds only for actually equal sets.
But for many constructions used in practice, sets in bijection are also “interchangeable”:

Definition 2.68. An operation on sets F(Xy,...,X,1), e.g., X,P,N, is called functorial (on
bijections!?) if it comes equipped with, for each bijections f; : X; = Y;, an induced bijection
F(fo,.-y fa—1) : F(Xo,...,Xpn-1) = F(Yp,...,Y,—1). These induced bijections should respect
composition in the f;: if we have another family of bijections g; : Y; & Z;, then we require

F(gos -y gn-1) © F(fo,- -y fa—1) = F(go© fo,- -+, gn—10 fn-1).
Exercise 2.69. Show that this implies F'(idx,, .. .,idx,_,) = idp(x,,... x,,_,) and F(fo_l, .. ,f;}l) =
F(fos -+ fam1)™"
Example 2.70. x is a functorial binary operation: for fy: Xo = Yy and f; : X1 =2 Y1, we have
XoxX12Yyx Y
(z0, 21) = (fo(z0), f1(z1)),

and it is easily seen that this preserves composition in the f;.
Example 2.71. “Exponentiation”, i.e., sets of functions, is functorial: for fy, fi as above, we have
X0 =yl
hes fioho fy': Yy — Xo — X1 — Y1.

10The general context for this concept is the area of math called category theory, which we will not go into.
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Exercise 2.72. Verify that this preserves composition in the f;.
Exercise 2.73. Show that P (powerset) is a functorial unary operation on sets.

Example 2.74. |J (union) is not a functorial unary operation. For example, {@} = {{@}}, but
U{e} = 2 # {2} = U{{2}}-
Exercise 2.75. Show that U is not a functorial binary operation either.

This reflects the fact that in mathematical practice, it is unusual to take the union of two (or
more) sets without knowing something about how they are related. Usually, we only take union
of subsets of a given ambient set; or else, we take a disjoint union of unrelated sets. This latter
concept is again defined up to a choice of encoding;:

Definition 2.76. For a family of sets (X;);cr indexed over a set I, its disjoint union | |, ; X; is a
set equipped with an indexed family of injections ¢; : X; — | |..; X; whose images are disjoint and
cover | |;; X;. In other words:

(2.77) For each i € I and = € X;, we have a corresponding element ¢;(z) € | ];c; X;.

(2.78) Each y € | |;c; X; is equal to such an ¢;(x) for a unique ¢ and = € X;.

jer

One (“standard”) encoding is given by
Licr Xi :={(i,2) € I x U;e; Xi | 2 € X},
ti(z) :== (i, x).
Exercise 2.79. Show that all encodings of disjoint union obeying these axioms are in canonical

bijection with each other. Moreover, | |;.; is a functorial “I-ary operation” (define what this means).

We also mention various other “canonical” bijections commonly used throughout math. These
are perhaps not all thought of as converting between different “encodings” of the same concept;
nonetheless, one frequently abuses notation/terminology by treating them as equalities.

Example 2.80. For any set X, there is a bijection between subsets of X and their indicator (or
characteristic) functions:

P(X) =2¥
xa:X —2={0,1}
A = 1 ifz e A,
v 0 else
] = 1

Example 2.81. For any sets X,Y, Z, we have bijections
ZXXY o~ (ZX)Y
[y (e flzy)
(9(¥)(z) < (2,9)) < 9,
and similarly ZX*Y = (ZY)X,
Exercise 2.82. Give a bijection P(X x Y) = P(X)Y.
Exercise 2.83. For an indexed family of sets (X;);cr and a set Y, give a bijection
yUier Xi o Hie] Y&,

Exercise 2.84. In particular, P(| |;c; Xi) = [[;c; P(Xi).
12



3. INDUCTION

Now that we have introduced the basics of set theory, we turn to developing the general theory of
induction, which will include usual induction for N as a (very) special case. The general idea is:
we have a set X of elements that we're inducting on, and a way of “deriving” new elements from
previous ones; we say a principle of induction holds if everything can eventually be derived.

3.A. Monotone set operators and the Knaster—Tarski fixed point theorem.
Definition 3.1. A monotone set operator 7 : P(X) — P(X) on a set X is a function obeying
VA,Be P(X)(ACB = T(A) CT(B)).
A subset A C X is T-closed if T(A) C A.
There are many possible interpretations of this simple definition. For the purposes of induction,

we think of T" as specifying, for each subset A C X, the set of new elements 7T (A) which can be
“derived” from A. Being T-closed means that all elements “derivable” from A are already in A.

Example 3.2. We have a monotone set operator on X = N given by
T(A):={0}Uu{n+1|ne A}
In other words, we start with 0 (the base case), and can derive n + 1 from n (the inductive case).
The only T-closed subset of N is all of N (this will be taken as the definition of N; see Axiom 3.152).
Example 3.3. We have another monotone set operator on N, given by
T(A):={neN|Vm<n(meA)}
={neN|nCA} (recalling Definition 2.64; see also Axiom 3.152).

This says that n can be derived once we know everything smaller, and corresponds to the principle
of “strong induction”; see Example 3.12.

Example 3.4. Let X be any set, and let (f; : X" — X);c; be a family of “N;-ary operations” on
X, where the N; are arbitrary sets. The set X equipped with such a family (f;)ier is sometimes
called an algebra, or more verbosely, a first-order structure over a functional signature. Examples:
(a) R equipped with +:R? - R, -:R?2 5 R, —:R - R, 0: R =R, and 1 : R® - R, or a
subset thereof, e.g., only +, —, 0.
(b) R equipped with 4 : (R")? — R" (vector addition), 0 : (R")? — R™ (zero vector), and for
each a € R, the unary operation a - (—) : R — R" (scalar multiplication).
(c) P(X) for an arbitrary set X, equipped with N,U, -, &, X (where =4 := X \ A).
(d) P(X) for an arbitrary set X, equipped with ,U, -, @, X, where (,J : AN — A.
(e) N equipped with 0: N — N and S : N — N where S(n) := n + 1 (successor).
(f) N equipped with only S : N — N.
We may then define the monotone set operator

T(A) :={fi(@) |icl & 7 c AN},
A T-closed set is then a set closed under the operations. For example, in (b), a T-closed set is a
vector subspace of R™. In (e), T recovers that from Example 3.2.
Example 3.5. Let X be an arbitrary set, and define the set operator 7 on X? by
T(A) ={(z,z) |z € X} U
={(y,2) | (z,y) € A} U
={(z,2) | (z,9), (y,2) € A}.

Then A C X2 is T-closed iff A is an equivalence relation on X.
13



Theorem 3.6 (Knaster—Tarski fixed point). Let 7": P(X) — P(X) be a monotone set operator.
For every A C X, there is a smallest T-closed T'(A) D A, called the T-closure of A, or sometimes

the T-closed subset generated by A. Moreover, T(T(2)) = T(2).
Proof. The first claim follows from combining the following two useful facts:

Lemma 3.7. For any monotone set operator 7' : P(X) — P(X), the T-closed sets are closed under
arbitrary intersections, i.e., if A C P(X) is a set of T-closed sets, then so is [).A.

(This includes the case [].A = @ from Remark 2.21.)
Proof. For each A € A, we have T(().A) C T(A) C A by monotonicity, whence T((1A) C (A O

Proposition 3.8. For any set X and family of subsets A C P(X), the following are equivalent:

(i) A is closed under intersections (including (1@ = X from Remark 2.21).
(ii) For every A C P(X), there is a smallest A € A such that A C A.

(Such an A C P(X) is sometimes called a closure system.)

Proof. (i) = (ii) Let A:=({B € A| AC B}. Then A € A since A is closed under intersections,

and every other B € A such that A C B is one of the sets we’re intersecting, hence contains A.
(ii) = (i) This follows from the preceding lemma, since A + A is easily monotone: if A C B,

then A C B C B € A, whence A C B. O

Finally, to show T(T(2)) = T(2): C is because T(2) is T-closed; then by monotonicity,
T(T(T(2))) € T(T(@)), whence T(T(@)) is T-closed, and contains @, whence T'(@) C T(T(@)). O

The following is merely a restatement of the definition of T(A):

Principle of T-induction for T. Let T : P(X) — P(X) be a monotone set operator and A C X.
(a) For any B C X, if AC B and T(B) C B, then T(A) C B.
(b) Equivalently, for any property ¢(z), if
o Vx € A, ¢(x) (base case) and
e VxeTH{y e X | o(y)}), ¢(x) (inductive case),

then Vo € T(A), ¢(x).
To go between (a) and (b), simply take B := {z € X | ¢(z)} and ¢(z) <= x € B.

Example 3.9. For T': P(R") — P(R"™) which closes under the vector operations (Example 3.4(b)),
this says that to prove that a subset B C R™ contains the linear span of some vectors ;, it suffices
to check that B contains each ¥; and is itself a subspace.

For example, this is how one usually proves that span(A4) C A+L, for every A C R™: clearly
A C A+t and the orthogonal complement B+ of every subset is a linear subspace.

Example 3.10. For T' : P(N) — P(N) which closes under successor S (Example 3.4(f)), the
T-closure of A := {0} is all of N. So the principle of T-induction says that to prove Vn € N¢(n), it
suffices to

e prove Vz € {0}, ¢(x), i.e., $(0);
o prove Vo € {y + 1] ¢(y)}, d(2), L.e., d(y) = oy +1).
This is the ordinary principle of induction for N.
For T which instead closes under 0 and S, the T-closure of A = & is already all of N. So to prove
Vn € N¢(n), it suffices to

e prove Vo € {0} U{y+ 1| ¢(y)}, o(x), i.e., $(0), and ¢(y) = o(y + 1).

This is again the ordinary principle of induction for N.
14



As this example indicates, considering the special case of T() = X is already enough in many
cases. In fact, we can always reduce to this case; see Exercise 3.15 below. We thus restate the
principle of induction in this special case, where it takes a simpler form:

Definition 3.11. We call a monotone set operator T : P(X) — P(X) inductive if T(2) = X, i.e.,
the only T-closed subset of X is all of X.

Principle of T-induction for X. Let T : P(X) — P(X) be an inductive monotone set operator.
(a) For any B C X, if T(B) C B, then B = X.
(b) Equivalently, for any property ¢(z), if Vo € T({y € X | ¢(x)}), ¢(x), then Vo € X, ¢(x).
(c) Equivalently, for any @ # C C X, we have CNT(X \ C) # @.

Part (c) intuitively says that any nonempty C' C X contains an element which can be “derived”
from elements not in C, and is equivalent to the contrapositive of (a) with B := X \ C.

Example 3.12. In the preceding example, we showed how taking 7" : P(N) — P(N) to close under
0, S yields the ordinary principle of induction.
Taking instead T'(A) := {n € N|Vm < n(m € A)} as in Example 3.3, we get

(b) To prove Vn € N, ¢(n), it suffices to prove Vn € N, ((Vm < n, ¢(m)) = ¢(n)). This is
the principle of strong induction for N.

(c) For any @ # C' C N, there is n € C such that no m < n is in C, i.e., n is the least element
of C. This is the well-ordering principle for N.

Remark 3.13. The proof of the Knaster—Tarski Theorem 3.6 is a “top-down” or (in philosophical
terminology) impredicative construction: in order to build the smallest set obeying some condition,
we had to look at all possible such sets. In other words, to build a simple thing, we had to look
at everything more complicated than it. This is technique is very powerful, but a bit unsatisfying,
since it tells us basically nothing about what the simple thing actually looks like.

A perhaps more satisfying “bottom-up” construction is to start with @ (nothing), then add
everything derivable from that, yielding 7'(@), then add everything derivable from that, yielding
T%(2) = T(T(@)), etc. After infinitely many steps, we’re done if everything derivable from
T(2) := U,en T"(9) can already be derived from a finite stage; this will be true if the notion of
“derivation” defined by T is “finitary” in nature, e.g., if we’re closing under finitary operations such
as +, - in Example 3.4(a). If not, we have to keep going: T (@) := T(T>°(2)), etc.

(3.14)

But this description is only informal at this stage, because this “transfinite” process is an instance
of the general inductive processes we're aiming to formalize; see Section 3.1.

Exercise 3.15. Let T : P(X) — P(X) be a monotone set operator, and fix A C X.

(a) Verify that T4(B) := AUT(B) is also a monotone set operator on X, restricting to 7'(A).
(b) Show that T4 is inductive on T'(A), and that the principle of induction thereof yields the
original principle of T-induction for T(A).
(c) Conclude that T(A) = AUT(T(A)).
15



3.B. Examples of induction. In this subsection, we assume we know about ordinary induction,
and other basic facts, for N, R, etc. Our goal is to demonstrate the power of the general framework
of induction, via some interesting examples from many different areas of math.

First, an amusing example of ordinary induction for N:

Example 3.16 (blue-eyed islanders). On an island live 500 inhabitants, 100 of whom have blue
eyes while the other 400 have brown eyes. These islanders are extremely smart, able to immediately
deduce any logically true statements. However, they have a very strict religion that forbids one from
knowing one’s own eye color; anyone who finds out their own eye color is required to commit ritual
suicide the following day at noon in the village square, where all the other islanders can see. One
day, a foreigner visits the island and casually remarks at a village gathering with everyone attending,
“It’s lovely to see another blue-eyed person like myself in this part of the world.” What happens?

Solution. We claim that all of the blue-eyed people will simultaneously commit suicide 100 days
after the foreigner makes the remark. More generally, we will prove by induction that if there are
n > 1 blue-eyed people, they will all commit suicide n days after hearing the remark. If n = 1, the
blue-eyed person finds out they have blue eyes, and so must commit suicide the next day. Now
suppose the claim holds for n; we prove it for n + 1. Each blue-eyed person sees n other blue-eyed
people, hence knows there are either n + 1 blue-eyed people in total (if they also have blue eyes) or
n (if they don’t). If there were n blue-eyed people, by the IH, they would commit suicide on the
nth day. So on the nth day, since no one dies, every blue-eyed person figures out there are n + 1
blue-eyed people, hence that they have blue eyes, hence must commit suicide on day n + 1. O

Exercise 3.17. What happens to the brown-eyed people?
Exercise 3.18. What new information did the foreigner introduce that wasn’t already known?

Exercise 3.19. Suppose one of the islanders is a noble saint, and would like to save everyone else.
What can she do?

Remark 3.20. The philosophical/sociological /economic phenomenon this puzzle illustrates is
known as common knowledge: everyone knows something, and everyone knows that everyone knows
it, and everyone knows that everyone knows that everyone knows it, etc., which can be quite different
than simply everyone knowing it. More complicated forms of induction can show up in common
knowledge situations; see TODO.

We now turn to other forms of induction, i.e., other inductive set operators T': P(X) — P(X).
In practice, one usually does not bother to explicitly write out the T'; rather, one merely states the
“closure” conditions, from which it is easy to read off T', as well as the principle of induction, which
recall is equivalent to the assertion that T is inductive.

Proposition 3.21 (principle of Cauchy induction). Let f : N — N be a strictly increasing function,
ie., f(n) < f(n+1). Suppose B C N such that

e f(0) € B;

e f(n)e B = f(n+1)e€B;

en+leB — necB.
Then B = N.

Proof. By ordinary induction, f(n) € B for every n € N. Since 0 < f(0) < f(1) < --- < f(n),
n < f(n) for all n € N (technically, this is again by ordinary induction on n). By ordinary
induction on k£ and the third property above, n +k € B = n € B. Thus for every n € N, from
f(n)=n+(f(n) —n) € B, we get n € B. O

Exercise 3.22. What is the inductive set operator T': P(N) — P(N) for which the principle of
T-induction yields the above?
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Theorem 3.23 (AM-GM inequality). For any n > 1 and z1,...,z, € [0,00), we have

T+ + Ty
DT s yar

n
Proof. By Cauchy induction with the increasing function f(n) = 2.

e For n =1, it’s trivially true: z1 < z7.

e For n =2, expand (y/z — /y)? > 0 to get z — 2,/zy +y > 0.
e Suppose it’s true for 2"; we prove it for 27+,

z1+-Fxon Ton g1+ +Tont1
2n +

1+ -+ Tontl o

pu— 2n
2n+1 2
2/T1 - Xon + 2 /Tonyq - Tgnit
> + 2 by TH
2
> \/27\7901--%2" 2/ Ton g1 Toni1 by n =2 case

= 2"+\1/m'
e Finally, suppose it’s true for n + 1; we prove it for n. WLOG not every x; # 0. Then
Ty Ty Tt gy 4 B

n n+1
Raise to the (n + 1)th power, divide by w > 0, and take the nth root. O

Definition 3.24. The lexicographical ordering on N? is the binary relation defined as follows:
(a,b) <lex (€,d) <= (a<c) or (a=c & b<d).
Proposition 3.25 (principle of lexicographical induction on N?). Let B C N2 such that
e for every (a,b) € N2 if every (c,d) <iex (a,b) is in B, then (a,b) € B.
Then B = N2,
Proof. We prove by (strong) induction on a that for every a € N, for every b € N, (a,b) € B.

e Assume (IH) that for every ¢ < a, for every d € N, (¢,d) € B. We now induct on b.
— Assume (IH2) that for every d < b, (a,d) € B. Then for every (c,d) <jex (a,b), either
% ¢ < a in which case (¢,d) € B by (IH), or
* ¢ =a and d < b in which case (¢,d) € B by (IH2).
Thus every (¢, d) <jex (a,b) is in B, and so (a,b) € B by our assumption on B. O

Example 3.26 (Ackermann function). Define the following computation on finite nonempty
sequences of natural numbers, that takes a sequence and replaces the last two terms as follows:

(agy ..., an-1,0,y) — (agy -y an-1,y + 1),
(ag,...,an—1,2+ 1,0) — (agy .., an-1,2,1),
(agy ..., an—1, 2+ 1L, y+1) — (ag,...,an—1,z,2 + 1,y).

For example:
(1,2) — (0,1,1)
— (0,0,1,0)
— (0,0,0,1)
—(0,0,2) — (0,3) — (4).
Try starting with (3,3) instead. [Hint: if you're very fast, it’ll take you around 2 hours.]
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Theorem 3.27. This computation always terminates with a single term.

Proof. First, we prove that starting from any sequence (ag, . .., an, ay4+1) with at least two terms,
the computation eventually reaches some (ag,...,b), by lexicographical induction on (a,, an+1).
Assume (IH) that this happens for every (bo, ..., bm, bym+1) With (b, bmt1) <lex (@n, Gnt1)-
e If a,, = 0, we immediately get (ag,...,an+1 + 1).
e If a;, > 0 but ap11 = 0, we get (ag,...,a, — 1,1), which has the same length; since
(an, — 1,1) <jex (an,0), by the IH, we eventually reach some (ay,...,b).
o If ay,ant1 > 0, we get (ag,...,an — 1,an,an+1 — 1) which has one more term, and by the
IH eventually reaches some (ag,...,a, — 1,b); now since (a, — 1,b) <jex (an,an+1), this
eventually becomes some (ao,...,c).
Now by induction on n, every sequence of length n > 0 eventually reaches a single term. O

Remark 3.28. The Ackermann function A : N> — N, that computes the single term above
resulting from a pair of terms, is historically important as the first example of a function which
can be computed by a program, but cannot be computed in a programming language that has only
if...else clauses and loops of the form for i = 0,...,n. Such programs are called primitive
recursive, and include virtually all algorithms used in the real world. (They include way more than
commonly considered classes of functions in computational complexity theory, e.g., NP, EXPSPACE.)

Remark 3.29. In fact, since the above proof used lexicographical induction not to directly prove
the claimed statement, but to prove an intermediate subclaim, the actual “length” of the induction
of the entire proof is even “longer”; see TODO.

For a more general discussion of lexicographical induction, see Exercises 3.169 and 3.172.

Proposition 3.30 (real number induction). Let A C [0, 00) (the nonnegative reals) such that
(i) 0 € A;
(ii) A is downward-closed, i.e., y <x € A = y € A;
(iii) A is closed under increasing limits, i.e., if xg < x1 < --- € A is bounded, then lim,,_, x, € A;
(iv) A is closed under = — x + ¢(z), for some fixed function ¢ : [0,00) — (0, c0).
Then A = [0, c0).

Proof. We need to use Dedekind-completeness of R: any nonempty subset A of R with an upper
bound has a least upper bound sup A. (This is a defining property of R that distinguishes it
from @, that you would see in a real analysis course.) Suppose A # [0,00). Then since A is
downward-closed, any element of [0,00) \ A is an upper bound for A. We also know 0 € A, so
sup A exists. We must have sup A € A: if not, then sup A > 0 (since 0 € A), and we can find a
sequence 0 < zy < 1 - -+ < sup A converging to sup A from below; since each x; < sup A4, x; is not
an upper bound for A, hence is below some element of A, hence in A by downward-closure; but this
contradicts (iii). But then sup A € A is the greatest element of A, contradicting (iv). O

Theorem 3.31 (Heine—Borel). Let A be a set of open intervals (a,b) C R such that [0,1] C |J.A.
Then there is finite 7 C A such that [0,1] C F.

Proof. We prove the same for [0, z] in place of [0, 1], by induction on z.
(i) For z =0, [0,0] = {0} is contained a single interval in A.

(ii) If finitely many intervals in A cover [0, z], then they also cover [0,y] for y < x.

(iii) Let zyp < z1 < --+ /o < co. Then x belongs to one interval (a,b) € A. Since x; ' x, there
is n such that x,, € (a,b), whence [z,,z] C (a,b). By the induction hypothesis, there is
finite 7 C A covering [0, z,,]. Then F U {(a,b)} covers [0, z].

(iv) For each x € [0,00), x belongs to an interval in A, hence so does = + 1/n for sufficiently
large n € N; let ¢(x) := 1/n for the least such n. Then if finite 7 C A covers [0, 2], then
FU{(a,b)} for an interval (a,b) containing both z,z + 1/n covers [0,z + (z)]. O
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3.C. Well-founded relations. For a general monotone set operator T' : P(X) — P(X), each
x € T(A) may be “derivable” from A in more than one way, and there may not be a well-defined
notion of “those y € A which are absolutely essential to derive z”, i.e., a smallest B C A such that
x € T(B) (see Exercise 3.42 below). We now consider those special kinds of operators 7' for which
there is always a set of such “essential predecessors” for each x. To specify such a set for each x is
to give a function X — P(X), which by the canonical bijection P(X)X = P(X x X) (Exercise 2.82)
is equivalently to give a binary relation on X.

Definition 3.32. Let < C X? (“precedes”, \prec in TEX) be an arbitrary binary relation. The
induced monotone set operator is
T=T;:P(X)— P(X)
Ar—{re X |Vy<z(yec A}
={reX|lzCA}
where
le=lo={ye X |y=<xz}
is the set of <-predecessors of z. We call A C X <-closed if it is T-closed, i.e., if every z € X
with Jo C A is itself in A. Thus, we also call T(A) the T-closure of A.

Remark 3.33. The | notation is commonly used when < is an ordering relation (see Definition 3.106).
However, the definition makes sense for arbitrary <.
When < is a reflexive partial order <, then |z is often called the downward closure of z, or
rather, of the singleton {z}. More generally, the downward closure of A C X is
A={yeX|TreA(y<z)}
={yeX|FI>y(xecA}
Note that T above is not the upward closure TA, defined the same way but with > flipped to <!
Rather, T is the de Morgan dual, with respect to set complement, of 1:'!

T(A) =X\1X\A) ={ye X [Pz <y(z ¢ A)}.
Definition 3.34. We say that < is a well-founded relation if the induced T is inductive, i.e.,
(a) We have the principle of well-founded induction for <: the only <-closed B C X is X.
(b) Equivalently, to prove ¢(z) for all z, it suffices to prove ¢(x) assuming ¢(y) for all y < x.
(c) Equivalently, every @ # C' C X contains a <-minimal z € C, i.e., CN ]z = 2.
More generally, the well-founded part of < is WF(<) = WF(X, <) :=T(9).

Example 3.35. On N,

m<n <<= n=m+1
defines a relation whose induced T is precisely that from Example 3.2, thus whose principle of
well-founded induction is ordinary induction on N. Here is a picture of this <:

0 1 2 3

Example 3.36. Still on N, < := < defines a relation whose induced 7' is that from Example 3.3,
thus whose principle of well-founded induction is strong induction on N. Picture:

02 1; é2g ;3 2

Lyt < were a reflexive partial order, then it would be consistent with terminology from topology to call T'(A)
the upward interior of A (it is the interior operator of the topology whose closure operator is 1). But this is too
confusing in our context, where we want to think about T'-closure for the purposes of induction.
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As indicated by the above pictures, a common way to visualize an arbitrary binary relation R on
a set X is as arrows or “directed edges” between the elements or “vertices”. When thinking of R in
this way, we also call it a directed graph, which is formally just a synonym for binary relation.

Definition 3.37. A binary relation < C X? is:

e reflexive if x < z for all x € X;

o irreflexive if x £ z for all x € X;

e symmetricif z <y = y <z for all z,y € X;

e antisymmetricifz <y <z = z =y forall z,y € X;
transitiveift <y <z = x <z forall x,y,z € X.

Note that “irreflexive” is not the same as “not reflexive”, and “antisymmetric” is not the same as
“not symmetric”. Note also that given irreflexivity, antisymmetry is equivalent to: x £ y or y 4 x.

Proposition 3.38. A well-founded relation < is irreflexive and antisymmetric, i.e., there are no
directed cycles x¢p < 1 < --- <z, = xg of lengths n = 1,2; in fact, there are no directed cycles
of any length n > 1.

Proof. The directed cycle would be a subset with no minimal element. O
More generally, we have

Proposition 3.39. A binary relation < C X? is well-founded iff there are no infinite descending
sequences ro > 1 = T3 = --- (where = := <~1). In other words, in the directed graph, there are
no “paths from infinity” - -+ — xo — x1 — xp.

Proof. =>: Such a sequence would form a subset with no minimal element.
<=: Suppose < is not well-founded; let C' C X be nonempty with no minimal element. Pick
xzg € C, then inductively, given z,, € C' which cannot be minimal, pick x,, > z,41 € C. O

Remark 3.40. This might seem like a more intuitive definition of well-foundedness. However, from
a foundational standpoint, the above proof is rather nontrivial: not only does it assume N i.e.,
the Axiom of Infinity, but it even uses the Axiom of Choice 3.203 in order to pick x,41 arbitrarily
from among the potentially many predecessors of x,, at each stage. (See Exercise 3.208.) This
characterization is thus best used for visual intuition; the conceptual significance of well-foundedness
is our official definition: that we can do induction on it.

Example 3.41. A simple undirected graph, usually called simply a graph, is an irreflexive
symmetric binary relation. Given an irreflexive antisymmetric <, we may symmetrize it into
~ := < U>. We may visualize this as vertices connected by unoriented edges (no arrows); the
original < amounts to picking one of the two possible orientations for each edge.

A graph ~ is acyclic if it has no cycles of length > 3. (Of course, any edge yields a cycle of
length 2. There are no cycles of length 1, since we assumed irreflexivity.) An acyclic graph is also
called a forest. A tree is a connected acyclic graph.

Note that if ~ is a forest which is the symmetrization of an irreflexive antisymmetric <, then
there are no instances of transitivity which hold for <, i.e., no z,y, z for which x < y < z and
also x < z, or else we would have a cycle of length 3. Example 3.35 is a tree (after symmetrizing);
Example 3.36 is not, being transitive. Here is another example:




It is a bit silly to have “branches” of the tree pointing both backwards and forwards; usually, we
would pick the orientations of the edges to point towards or away from a specified “root”. Call < a
directed forest (some would say coforest) if it is irreflexive antisymmetric, its symmetrization is a
forest in the above sense, and moreover each vertex x has at most one successor y > x. If  has no
successor, it is a root vertex (of its connected component; some components may have no root
vertex, in which case they are instead “rooted at infinity”). For example:

N
N
VAN
| N\

(a) Show that a binary relation < C X2 may be recovered from the induced T : P(X) — P(X).
(b) Show that conversely, a monotone set operator 7' : P(X) — P(X) is induced by some binary
relation < iff T' preserves arbitrary intersections, i.e., for any family of A; C X, we have
T(N; 4i) =), T(A;) (keeping in mind Remark 2.21 about empty intersections); and that
this is in turn equivalent to: for each z € X, there is a smallest A C X such that x € T'(A).
What is this smallest A, in terms of <?
Thus, we have a bijection between the set of inductive monotone 7" : P(X) — P(X) preserving
intersections, or equivalently such that each x € X may be “derived” from a smallest set, and the
set of well-founded relations < C X?2.

Example 3.43. Closing under algebraic operations on some well-known structure does not typically
correspond to a relation <. For example, T : P(N) — P(N) from Example 3.4 which closes under +
is not induced by any <, since it does not preserve intersections: we have 4 € T'({1,3}) N T'({2, 2}),
but 4 ¢ T({1,3} N{2,2}) =T(9) = 2.

However, if the set X consists of formal symbolic expressions'? built from the operations f;, then
T does come from a well-founded <, namely

s <t <= s is a immediate subexpression of t = f;(...,s,...) for some f;.

For example, if X consists of all expressions built from the single binary operation +, starting from
the symbols 0, 1,2, then < is given by a directed graph that looks like

I+1l—— (1+1)+2 —— -

27— 1+2—— 14+ (1+2) —— -

12¢hat is, terms in first-order logic
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A key feature of notions of induction given by well-founded relations, that does not generalize (at
least not easily; see Example 3.50 and Remark 3.51) to arbitrary monotone set operators, is that we
may not only prove statements ¢(z) by induction on x, but also define objects f(z) inductively:'3

Theorem 3.44 (principle of well-founded inductive definition). Let < be a well-founded relation
on X, let (Yz)zex be a family of sets, and let

Y.
(Fx IIY. - Yx)xeX e ] vil=".
z=<x rxeX

Then there is a unique f € [] Y, such that for each x € X,

In other words, “to define a family (f(z) € Y)zecx, it suffices for each x to define f(z) € Y,
assuming given f(z) € Y, for each z < x”; this definition of f(x) given (f(z)).<s is given by Fj.

zeX

Proof. Uniqueness follows easily from well-founded induction: if f,g € [[,cx Yz are two such
functions, and f(z) = g(z) for all z < z, then

f(@) = Fo((£(2))2<e) = Fa((9(2))2<2) = g().
We now prove existence. We identify f with its graph, which is to be a set of pairs
fe et xv) cxx (J 7.
zeX zeX

The requirement on f says that for each z € X and y € Y,,

(%y) €f <= I(Y:)xe € Hz<xYZ (y = Fw((y2)2<r) & Vz=<x((29.) € f)).

By the Knaster—Tarski Theorem 3.6, there is such a set of pairs f. We prove that f is a function,
ie, Ve e X3y eY, ((z,y) € f), by <-induction on z. Assume Vz < 23y, Y, ((z,y,) € f). Then
by the above <=, the unique y such that (z,y) € fis y = Fu((¥2)2<z)- O

Example 3.45. | : N — N (factorial), i.e., (n!)nen € [[,en N, is defined inductively as follows:
0!:=0,
(n+1)!:=(n+1)- -nl
In the above formalism: take < to be the successor relation from Example 3.35, X :=Y,, := N, and
Ey: HmewN =N’ —N
g — 0,
Foir: ey N=N" — N
(y) — (n+1)-y.
Example 3.46. The Fibonacci sequence (f(n))nen € [[,,cn N is defined via strong induction:
f(0) =0,
f) =1,
fn)=f(n—=1)+ f(n—2) forn>2.

13Often, set theorists will insist that the correct terminology for “inductive definition” is recursion, and so

the following should be called the principle of well-founded recursion; the term “induction” is reserved for proving

statements. We think the term “inductive definition” is so well-used that this is a futile and pointless battle to fight.
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In the above formalism: take < := <, X :=Y,, := N, and
Ey Hm<nN:Nn — N
0 if n=20,
(Yo, -+ s Yn—1) > ¢ 1 ifn =1,
Yn—1 + Yn—2 ifn>2.

Example 3.47. Recall the Ackermann function A : N> — N defined via an algorithm as in
Example 3.26 and Remark 3.28. We may also define it directly, via lexicographical induction:

A(0,y) =y + 1,
A(z +1,0) := A(z, 1),
Alz+ 1,y+1) := Az, A(z + 1,y)).
Note that Example 3.26 is precisely the algorithm for expanding this definition:
A(1,2) = A(0, A(1,1))
= A(0, A(0, A(1,0)))
= A(0, A(0, A(0,1)))
= A(0, A(0,2)) = A(0,3) = 4;
now erase the A’s and nested parentheses to recover the computation from Example 3.26.

In the formalism of Theorem 3.44: we use the lexicographical ordering <jex on X := N? from
Proposition 3.25, which says precisely that <jex is well-founded; Y(, ,y := N; and
Foy) T <iontog N = NUOO-007D) — N
a—y+1,
Flat1,0): H(u,v)<lex(a:+1,0) N = NN N
ar— A(z,1)s

F(x+1,y+1) . H(u,v)<1ex(x+l,y+1) N = N((r+D)xN)U{(z+1,0),....(z+1,9)} _ N

a—Apa,,,,

Remark 3.48. In many examples, such as those above, the sets Y, in Theorem 3.44 are the same.
In fact, the general case where the Y,’s vary can be reduced to this simpler case, since we may
take Y := (J,cx Yz, define f : X — Y inductively, and then prove by induction that in fact, each
f(x) € Y;. On the other hand, the general form of Theorem 3.44 has the advantage that we may

Exercise 3.49. Deduce the principle of induction (i.e., that < is well-founded) from the principle
of inductive definition (Theorem 3.44).

Example 3.50. To see why the principle of inductive definition, unlike the principle of induction,
only works for a well-founded relation < rather than a general monotone 7" : P(X) — P(X): take

T:P(N)— P(N)
A—{0,1} U{z+y|z,yec A}
This is clearly inductive. If we try to define a function f: N — N T-inductively via
f(0) =0,
) i=2,
f@+y) = f(x)f(y),

we get two inconsistent definitions f(2) = f(1+1)=2-2=4and f(2) = f(0+2)=0-4=0.
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Remark 3.51. Note, however, that if we changed the above to f(0) := 1, then we do get a consistent
definition, namely f(z) = 2%. Conceptually, this is because the 1 together with - on N form a
monoid, i.e., an associative binary operation with an identity element. While N is not merely the set
of all syntactic expressions built from 0,1, + as in Example 3.43, it is the set of all such expressions
quotiented by the monoid axioms (at least up to canonical bijection, e.g., 1+ 1 ~2~ 0+ (1+ 1)),
i.e., it’s the free monoid generated by 1; the monoid axioms in some sense serve precisely to relate
all the different, potentially conflicting ways in which each x € N may be “derived” according to T
A similar idea applies to free groups (Definition 3.236), free rings (aka polynomial rings Z[X]), etc.

3.D. Homomorphisms and simulations. Our goal for the next few subsections is, broadly
speaking, to “compare” and “classify” different notions of induction. We will focus on well-founded
relations, although some things can be generalized to inductive T', as indicated in Exercises.

Example 3.52. Ordinary induction on N can clearly be “reduced” to strong induction. (The
converse is true as well, of course; but there the reduction requires proof.)

What does this mean, precisely? The successor relation < on N (Example 3.35) is a subgraph
of the < relation (Example 3.36), i.e., the predecessors |_z of the former are a subset of the
precedessors | _x of the latter, for any € N. Thus, if we know strong induction, then we can easily
deduce ordinary induction, whose induction hypotheses are a subset of those for strong induction.

Example 3.53. Consider the following induction principle for N2: for B C N2, if
e (0,0) € B,
e (0,y) e B = (0,y+1) € B,
e (z,00 ¢ B = (x+1,0) € B,
e (z,y+1),(x+1,yeB = (z+1,y+1) € B,
then B = N2. This is induction for the following well-founded graph on the left:

.3
\/\/ )
(0,2) (2,0) — 2

We may prove this induction principle by proving that (z,y) € B for all (z,y) € N2, by ordinary
induction on x + y. In other words, we have the addition function h : N> — N which “reduces” this
induction principle to ordinary induction for N.

Definition 3.54. For two sets equipped with binary relations (X, <x) and (Y, <y), a function
h:X —Y is a homomorphism (between the relations) if for all z,2' € X,

¥ <xr = f(2) =y f().
Proposition 3.55. For a homomorphism A as above, if <y is well-founded, then so is <x.

Proof idea. If <x is not well-founded, then (by Proposition 3.39) there is a descending sequence
xo >=x 1 >x -+, whence h(xo) =y h(x1) > -+, whence <y is not well-founded. O

However, we don’t like this “proof” very much, for it uses not only N but also the Axiom of
Choice! The following proof is similar in spirit, being based on the “contrapositive” form of the
principle of induction. Below, we give another “forward” proof, generalizing the usual way that

principles of induction may be used to prove each other (such as in Example 3.53).
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Proof 1. If <x is not well-founded, then there is @ # C C X with no < x-minimal element, whence
@ # h[C] C Y has no <y-minimal element, since for every h(z) € h[C]| where z € C, there is
x’ <x x, whence h(z') <y h(z). O

Proof 2. Let A C X be <x-closed; we show that Vo € X (x € A), by <y-induction on f(x). That
is, we show that Yy € Y Vo € f~1(y) (x € A), by <y-induction on y. Suppose (IH) this holds for
all ¥’ <y y. Then for all z € f~1(y), for all 2/ <x x, we have f(2') <y f(z) =y, whence by IH,
2’ € A. Thus since A is <x-closed, z € A. O

Example 3.56. If < is a well-founded relation on X, then any subrelation of < is also well-founded
(because idy is a homomorphism). This covers Example 3.52.

Example 3.57. If < is a well-founded relation on X, then for any ¥ C X, the restriction
<|Y := (<) NY? is well-founded on Y (because the inclusion Y < X is a homomorphism).

Exercise 3.58. Note that the above proof 2 of Proposition 3.55 uses the coimage

flAy ={yeY|Vze fHy) (€ A} =Y\ fIX\ AL
Generalize Proposition 3.55 to monotone set operators as follows: let X, Y be sets with monotone
set operators T'x, Ty respectively.
(a) Show that the following are equivalent:
(i) For all B C Y, we have f~![Ty(B)] C Tx(f~'[B]).
(ii) For all A C X, we have Ty (f(A)) C f(Tx(A)).
(iii) For all A C X, we have f[Sx(A)] C Sy (f[A]), where

is the de Morgan dual of Tx (we can think of Sx(A) as those  which “depend on A”,
i.e., for which A is necessary, rather than sufficient, to derive z); similarly for Sy.
(b) Show that if these hold, then they continue to hold when Ty, Ty are replaced with Tx, Ty .
(c) Conclude that f~[Ty (@)] C Tx(@). Thus, if Ty is inductive, then so is Tx.

In fact, the notion of homomorphism is not the most natural or general way to compare well-
founded relations. For example, in some cases, we want a function that transfers well-foundedness
forwards rather than backwards.

Definition 3.59. For two sets equipped with binary relations (X, <x) and (Y, <y), a relation
R C X xY is a simulation (of <y in <y) if for all z,2’ € X and y € Y/,

¥ <xxRy = F/ €Y (2’ Ry <y y),
ie.,
rRy = Vo' <x 23 <y y (@' Ry') <= 2 T<(R) vy,
Ro(<x) C(<y)oR.

We use squiggly arrows to denote R:

<X
r —s
]
R: éR
Yoo
/ Y
y --=E- ry

Example 3.60. If R is (the graph of) a function A, then this says precisely that A is a homomorphism

(since ¢y’ must be h(z')). More generally, if R is only the graph of a partial function h, then this says

that the domain of h must be < x-downward-closed and that h is a homomorphism on its domain.
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Example 3.61. < is a simulation of < on N in itself. Indeed, if 2’ < 2 < y, then there is ¢/ (e.g.,
y' =y —1) such that 2/ <y < y.

The term “simulation” refers to “simulating the history of x’s derivation”, as in the following:

Proposition 3.62. For a simulation R with dom(R) = X, if <y is well-founded, then so is <x.
More generally, R~![WF(=<y)] C WF(<x).

Bad proof idea. e T2 T1 Zo
Tt Y2 s >y - > Yo O

Exercise 3.63. Give proofs using (a) every nonempty set has a minimal element; (b) induction.

Example 3.64. The addition homomorphism h from Example 3.53 is a simulation (being a
homomorphism), and its inverse A~ is also a simulation.

Definition 3.65. R is a cosimulation if R~! is a simulation, and a bisimulation if it is both a
simulation and a cosimulation, i.e.,

rRy = V2! <xz3y <y y(@ Ry) & Vy <y y32' <x (' Ry') <: 2 T=(R) y.
This intuitively means that x and y have “histories which look the same”.

Corollary 3.66 (of Proposition 3.62). If h : X — Y is a surjective cosimulation, and <x is
well-founded, then so is <y. More generally, h[WF(<x)] € WF(=<y). O
Proposition 3.67. Let (X, <x), (Y, <y),(Z,<z) be three sets with binary relations.

(a) idx : X — X is a (bi)simulation.

(b)) f RCX xY and S CY x Z are (bi)simulations, then sois So R C X x Z.

(c) If RC X x Y is a bisimulation, then so is R~ C Y x X.
Proof. We only do (b): SoRo(<x)C So(<y)oR C (<z)oSoR; similarly for their inverses. [

Note that the definitions of simulation and bisimulation are both of the form “R C T'(R)”, for a
suitable monotone set operator T' as indicated above. This is dual to being T-closed.

Exercise 3.68 (dual Knaster—Tarski theorem). Let 7" : P(X) — P(X) be a monotone set operator.
Call A C X T-open if A CT(A). Show that for any A C X, there is a largest T-open T°(A) C A,
called the T-interior of A; and moreover, T(T°(X)) = T°(X).
Definition 3.69. For sets with binary relations (X, <x), (Y, <y), define

() = (Sxy) =TX xY) C X xY,

(E) = (’:X,Y) = Tg(X X Y) CX xY.

These are the largest simulation and bisimulation between <x, <y respectively (and depend on
<x, <y, even though we don’t write them in the notation). If z < y, we say z is simulable by y;
if x =~ y, we say z,y are bisimilar (also known as back-and-forth equivalent).

By virtue of their definitions as the largest T-open sets for some T', we have:
(3.70) 23y == 2T<(Jy < Vo' <x 2Ty <y y (&' ),
(371) zmy <= 2T<(R)y <= Vo' <xz/ <y y(@ =vy) & VY <y yIr' <x 2 (2’ = ¢).
Principle of coinduction for <, <.

3 ’ S
. x y S S u 5 xr ~ y.
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Proposition 3.74. If x < y, then x <y and y < x.

1

Proof. Because ~ is a simulation and a cosimulation, i.e., <™ is a simulation. ]

Example 3.75. If x € X has no predecessors, then it is simulable by all y € Y, while it can only
simulate y € Y which also has no predecessors, immediately by (3.70).

Thus, if z < y, then x has no predecessors iff y does. Conversely, if x, y both have no predecessors,
then clearly z = y (however, if both have predecessors, this may or may not hold).

Example 3.76. Let X,Y be the following well-founded trees:

Too Yoo
P S 7~
z1,0 T2 - 3.2 T43 Y1 Ys,4
T T I T T
22,0 M Y5,3

T ] 1
T30 T4,1 Y3 Ys,2

W )
T T
LA ooy Y511
T
Ys5,0

We have a homomorphism h : X — Y, thus also a simulation, shown in color, whence Zso < Yoo-
We also have a homomorphism Y — X mapping y; ; — ; ;, whence Yoo S Zoo-

However, we claim that 2o Z yoo. Otherwise, we would have (by (3.71)) 21 = Ynn—1 <y Yoo
for some n, whence 29 ~ Ynn—2 <y Ynn—1 (whence n > 3); but there is no z <x x2,0 with
DS Ynn—3 =Y Yn,n—2-

Exercise 3.77. Which z in (N, <) are simulable by which y in N with the successor relation?

Corollary 3.78 (of Proposition 3.67). Let (X, <x), (Y, <y), (Z, <z) be sets with binary relations.
(a) x =~ x for any = € X.
b)rzrmy~z = z~zande Sy<Sz = xSzforre X, yeY,ze Z.
(c)rmy = y~axforzre X, yeY.
Proof. For (b): (Ry,z) o (=x,y) € X x Z is a bisimulation by Proposition 3.67(b), hence contained
in (= x,z); similarly for <. O

3.E. Extensionality and the Mostowski collapse. The above three properties say that bisimi-
larity is an equivalence relation; in fact, not just on a single set with binary relation, but between
all elements in all such sets. (Formally, it is an equivalence relation on |_|( X,<) X, consisting of all

triples (X, <, ) where < C X2 and x € X, which is of course a proper class.)
Definition 3.79. A binary relation < C X? is extensional if =y is T-closed, i.e.,
rTo(=x)y <= Vo' <z <y@@ =y) &V <y <z (2’ =7
= VzeX(iz<z = z<Y)
= lr=J]y = x=y.
Note that clearly, (=x) C T<(=x); thus extensionality means T (=x) = (=x), i.e., =x is Tx-closed.

If it is in fact equal to ~x x, then we say < is strongly extensional; since < is always reflexive,
this equivalently means

TRXXY — T=Y.
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Example 3.80. € is extensional, by the Axiom of Extensionality (2.1).

Example 3.81. If < is extensional, it can have at most one minimal element (without predecessors).
Thus for example, a typical directed forest is not extensional.

Example 3.82. Let X = {0,1}, and let < = (=x):

Al (1

0 1
This is extensional, since [0 # | 1. However, it is not strongly extensional: {(0,1)} is a bisimulation
(for the only predecessor 0 < 0, there is 1 < 1 such that (0,1) € {(0,1)}), whence 0 < 1, but 0 # 1.

Could € fail to be strongly extensional? Not in ZF; see Axiom 3.100.

Proposition 3.83. Let <x C X? be well-founded, and <y C Y? be arbitrary. Then ~x,y is the
unique Tx-fixed point in P(X x Y).

Proof. By the bijection P(X x Y) = P(X)Y (Exercise 2.82), a T-fixed point R is determined by
R[{z}] for each z € X; and to say R is T<-fixed means

xRy < Vo' <z <y(@ Ry) & Vy <y3zx' <z (2’ RYy'),

ie.,

Rz}l ={y e Y |V2' <23y <y (y € R{2'}]) & V' <y3a’ <z (y' € R{'}])},
whence R[{x}] is uniquely defined by well-founded induction on x (Theorem 3.44). O
Corollary 3.84. A well-founded < C X? is extensional iff it is strongly extensional. O

Corollary 3.85. For a well-founded <x C X2, ~x,y can also be defined as T-(@)C X xY. O

Exercise 3.86. Show that for arbitrary <x, <y:

(a) T;(@ C X x Y) = (EX,y) N (WF(%X) X Y) = (§X7y) N (WF(%X) X WF(%y))

(b) T=(2 € X?) U (=x) = T=(=x) is an equivalence relation on X.

Definition 3.87. The strongly extensional quotient of (X, <x) is the quotient set X/~ x x
equipped with the relation

D <x/oyy C = VYo eCIeD(y=<xa)
— JreCIyecD(y=<x ),

where the choice of z € C' is irrelevant because < is a bisimulation.
When <x is well-founded, we also call X/~ x x simply the extensional quotient.

Proposition 3.88. The quotient map X — X/~y x (mapping x — [z]) is a bisimulation.

Proof. 1t is a homomorphism using the “Jx € C” definition, and a cosimulation using “Vx € C”.

<x
Yy ——m %
i
€ ée
¥ <X/,CXX
D C

Corollary 3.89 (of Proposition 3.62). <x is well-founded iff <x/<, , is.

Corollary 3.90. = ~x x/~  [7]-

O 0o o o

Corollary 3.91. [z] R X mxx X/ mx.x ly] <= z~xx .
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Corollary 3.92. <y, . is strongly extensional. O
Exercise 3.93. Show that in fact, ~x x/~, , is precisely the graph of the quotient map (i.e., €).

We thus have a canonical procedure for “collapsing” bisimilar elements of each (well-founded)
relation <x. The question remains: can we somehow identify bisimilar elements across all (well-
founded) relations? Note that there are proper class of them; thus the equivalence classes for the
global = relation are proper classes.!* Nonetheless, note that for z € X (equipped with <x) and
y €Y (equipped with <y), we have

xRy = Vo' <z <y@@=y) & VY <ydx) <z(2' =)
= Vo' <y <y([@]=[y]) &y <y’ <z (2] =[y])

= Vo' <z <y & VY <y Y] < [x]”

— 2" <z} =Al]1y <y}

(cf. Definition 3.79); the scare quotes are because we have not defined the < relation on these proper
equivalence classes [2], [¢/], nor may we collect them into these “meta-classes” on the last line. But
this computation suggests that instead of collapsing bisimilar elements into an equivalence class, we
can collapse them into these sets on the last line instead, which will indeed be sets, provided that
all ' < z have inductively likewise been collapsed into sets. This motivates

Definition 3.94. Let < C X2 be a well-founded relation. The Mostowski collapse of z € X is
defined inductively via

v =4 o= {{yly <z}
(Compare with |2 from Definition 3.32.) The Mostowski collapse of (X, <) is {[X]| = {{z | z € X }.

Remark 3.95. There is a technical problem with this definition: we do not yet know that it exists!
In the principle of well-founded inductive definitions stated thus far (Theorem 3.44), we need to
assume given sets Y, containing the values of the function { we’re inductively defining. And this
assumption is used in the proof of Theorem 3.44 via Knaster—Tarski, since we constructed the
graph of the function as T(@) C P(|],cx Yz), which was constructed in the proof of Knaster—Tarski
(Theorem 3.6) as the intersection of all T-closed subsets; we cannot take an intersection of all
T-closed subclasses instead, since to define said intersection requires a V over all such classes, which
do not exist in the mathematical universe.

Note however that provided { can be defined as a (a priori proper) class, then it is in fact a set,
by Replacement. Note also that we know { is unique if it exists, since the proof of the uniqueness
part of Theorem 3.44 in that case is a simple well-founded induction on <.

Later in Theorem 3.119, we will give a different proof of well-founded inductive definition that
can be generalized to proper classes. With this generalization, the above definition of { becomes
perfectly valid. In the meantime, any results we prove about { should be interpreted as prefixed
with “provided { exists”.

Example 3.96. For the “grid” graph from Example 3.53:

+0,2) = {{o}} 1,1 {z}}% = {{e}}

+0,1) = {2}

$(1,0) = {o}
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Proposition 3.97. For any well-founded relations <x C X2 and <y C Y2, we have
rRxy Y = v =4y
Proof. By induction, we may assume this holds for all 2 < 2 (and all ¥’ € Y'). Then
xRy = Vo' <z <y@@ =y) &V <y <z (2’ =)
= Vo' <2y <y’ =) & VY <yda' <z ({2’ =4y) byIH
L= (' @ <o) = (W | <y} = 0
Corollary 3.98. For any well-founded < C X2, | : X — {[X] is a bisimulation to € C {[X]2.

Proof. 1t is a homomorphism by definition: z <y = {x € {y. To show that it is a cosimulation:
if {x € dy, then {x = {z for some z < y; but by the preceding result, this means =z < z. ]

Exercise 3.99. Show that for any relation <x C X? and strongly extensional relation <y C Y?2,
(=x,y) € X xY is a partial function. In particular, { in the preceding corollary is unique.

We thus have a single “ultimate” notion of induction, namely the € relation between certain sets,
to which all other notions of induction are bisimilar via the { function:

(Colored blobs are ~-classes.) Do we get all sets in this way, i.e., is € itself well-founded?

Axiom 3.100 (Foundation/Regularity). For any set X, €x C X? is well-founded.
That is, for any A C X, if every x € X with x C A isin A, then A = X.
Equivalently, every @ # C (C X)) contains a €-minimal z, i.e., t N C = &.

Example 3.101. As a consequence of Foundation, there cannot be a set x such that x € z, because
then the singleton {z} would not contain a €-minimal element. (Thus the proper class {z | z € =}
in Russell’s paradox (Corollary 2.10) is in fact the entire universe V'.)

More generally, there cannot be any infinite descending sequences xo > x1 5 --- (Proposition 3.39).
This says that the infinite sequence (xg,x1,...) cannot exist (as a function from N); it could still be
the case that for each n individually, we can build a set x,, which lies in the previous one.™

As this example shows, the precise connection between the Axiom of Foundation, and “true
well-foundedness of €7, is a bit subtle; we will return to this topic in Section 3.J below.

Remark 3.102. People have occasionally considered alternatives to the Axiom of Foundation. One
extreme example is Aczel’s Anti-Foundation Aziom, which says “every binary relation < C X? has
a unique Mostowski collapse”. For instance, this implies “there is a unique x such that z = {z}”,

given by Mostowski collapsing the loop on a single vertex <O !
L5For model theorists: it is easy to build a model of set theory, including Foundation, which externally has such an

infinite descending sequence, using the compactness theorem for first-order logic.
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3.F. Transitivity. We begin this subsection by tying up a loose end from the last. Under the
Axiom of Foundation, arbitrary sets are precisely the representatives of bisimilarity classes of
elements of sets with well-founded relations (X, <), i.e., the Mostowski collapses {x of z € X (see
Corollary 3.191 below). But which sets are the Mostowski collapses {[X] of the sets X themselves?

Example 3.103. {{@}} is not {[X] for any set X equipped with a well-founded relation <. If it
were, then {@} would be {z for some x € X; but then by definition of {x, there must be y < = with
dy = (i.e, ly = @), and so & would also be in {[X].

Definition 3.104. Let < C X2 be a binary relation. We say that € X is <-transitive if
Vz<y<z(z<x),
or equivalently Vy < x (Jy C lx).

Thus, < is a transitive relation iff every x € X is a <-transitive element.
We say that a set X is transitive if it is e-transitive, i.e., the following equivalent conditions:

Yyexe X (ye X),
Ve e X (z C X),
X C P(X).

Proposition 3.105. For a set X, the following are equivalent:
(i) X is a transitive set and €x C X? is well-founded (i.e., Foundation holds for X).
(ii) €x is well-founded and {., =idx.
(iii) ex is well-founded and X = {[X].
(iv) X = {.[Y] for some well-founded relation < C Y2.
(v) X = {_y for some well-founded relation < C Y2 and <-transitive element y € Y.

Proof. (i) = (ii): Note that idx obeys the inductive definition (3.94) of {.
(ii) = (ili) = (iv) is obvious.
(iv) => (v): Let T be a new element not in Y,'® and put y < T for all y € Y; then {[Y] = {T.
(v) = (i) is obvious from the definitions of { and transitivity. O

We now turn to transitivity of relations, which is the other way of “comparing” different notions of
induction. Bisimilarity is a “horizontal” comparison: it only relates elements which have “identical
histories”, regardless of how “long” those histories are. But for instance, the successor relation on
N and the < relation (Example 3.52) are not bisimilar (since a bijective bisimulation must be an
isomorphism), even though they intuitively have the same “length” (cf. Exercise 3.77).

Definition 3.106. A binary relation is an irreflexive partial order (or strict partial order)
if it is irreflexive, transitive, and antisymmetric, and a reflexive partial order if it is reflexive,
transitive and antisymmetric. It is easily seen that for any set X, we have a bijection

{irreflexive partial orders < C X2} = {reflexive partial orders < C X?}
<= <U(=x)
<\ (=x) < <
By partial order, we ambiguously mean either of these, depending on context; when we have a <
or <, by default we always use the other symbol to denote its (pre)image under this bijection.
An irreflexive linear order (or total order) < is an irreflexive partial order which moreover

satisfies trichotomy
Ve,ye X(z<yorxz=yory<zx).

16ynder Foundation, we may take T :=Y; regardless, Russell’s paradox says that T :={y € Y | y & y} works.
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For a reflexive linear order <, this is equivalent to dichotomy
Ve,ye X (z <y or y<ux).

Again, a linear order means either of these.

A well-order is a well-founded irreflexive linear order. Since well-foundedness necessarily implies
irreflexivity (Proposition 3.38), when we say e.g., “< is a well-order”, we really mean that < is.
Similarly, a partial well-order is a well-founded irreflexive partial order, or equivalently just a
well-founded transitive relation (since well-foundedness implies irreflexivity and antisymmetry).

Exercise 3.107. Show that a well-founded relation obeying trichotomy is automatically transitive.

Definition 3.108. The transitive closure of an arbitrary binary relation < C X? is the smallest
transitive relation containing it (which exists by Knaster—Tarski; cf. Example 3.5).

Example 3.109. < is a well-order on N, and is the transitive closure of the successor relation.

Example 3.110. < is a well-order on N? (well-foundedness is by Proposition 3.25), which is

much “longer” than <y: (1,0)  (1,1)(1,2)

(0,0) (0,1)(0,2) (2,00  (2,1)(2,2)

Example 3.111. The transitive closure of the “grid” in Example 3.53 is the partial well-order
(a,b) < (c,d) == a<c & b<d & (a<corb<d)
(which is well-founded again because addition h : N> — N is a homomorphism, now to <).
Exercise 3.112. Assuming ordinary induction on N, show that the transitive closure of < is
r<y <= dn>ldr=x9g <21 <" <Tp_1 < Tp =Y.
Proposition 3.113. Let < C X2 be a binary relation. The transitive closure < of < is the smallest
binary relation containing < such that
(%) r<y<z = x<z
In other words, for each z € X, | _z C X is the <-downward-closure of | _z.
Note the significance of this: by definition, < is the smallest relation containing < such that
r<y<z — <z,

since < occurs twice on the LHS, with two different RHSs, the induction principle for < tells us
how to prove that x < y implies another property ¢(z,y) of two variables. By contrast, because (x)
only involves < with a single RHS, we may define each of the “horizontal cross-sections” | _z of <
separately; thus we get an induction principle to show that x < z implies ¢(z) for fized z.

Proof idea. This is rather obvious using Exercise 3.112. But we don’t want to use N yet! O

Proof. The smallest such < is contained in the transitive closure of <, since the latter is clearly also
a binary relation satisfying (*). Thus it remains to show that < contains the transitive closure of <;
since < contains < by definition, it suffices to show that < is already transitive, i.e.,

Ve<yVzeX(y<z = x<z2).

(z,y)

We induct on z < y, i.e., we show that the set of (x,y) satisfying ¢ also contains < and obeys (x).
Indeed, z <y = ¢(z,y) since < satisfies (x) by definition. And we have

=<y & ¢y,z) <= z<y&VWweXiz<w = y<w)

= YweX(z<w = z<w) < ¢(z,2) by (). O
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Corollary 3.114. The transitive closure < of < is also the smallest relation containing < such that

r<y<z = <z
Proof. Either copy the above proof, or apply the above result to >. ]

Proposition 3.115. Let < C X2 be a binary relation with transitive closure < (which may or may
not be irreflexive, if < is not well-founded), and < := < U (=x). Then < is a simulation from < to
< (while idx is a homomorphism in the reverse direction). In particular, every = € X simulates
itself from < to < and vice-versa; hence WF(<) = WF(<), and < is well-founded iff < is.

Recalling again that for < := the successor relation on N, equality is not a bisimulation between
< and <, this gives yet another illustration of the difference between mutual simulability in both
directions <N 2 and bisimilarity ~ (cf. Example 3.76).

Proof. Let ' < x < y; then either x = y or x < y, both of which yield 2’ < y.

<
~
|
|
|

il

<
.fL'/ —vNNAAY y’

<

By Corollary 3.114 and Exercise 3.15, we have < = <U (<0 <) = <o <; thus 2/ < y means
' <y <y for some 7/. O

Corollary 3.116. Let <y C X? and <y C Y2, with transitive closures < x, <y respectively. Then
<xy between <y, <y is the same as between <y, <y.

~

Proof. Because we can compose the simulations Sxy with <, 2 between <, <:

<
(X, =<x) = (Y, <y)

iaxC(5n2)| Jiovenz)
Sxv
(X, <x) ~ (Y, <y) O
Exercise 3.117. Give a direct proof that < is well-founded iff its transitive closure < is. [Imitate
the usual proof of strong induction from ordinary induction on N: to prove Vn ¢(n) by strong
induction, prove YnVm < n ¢(n) by ordinary induction. You’ll probably need a step similar to the
use of Corollary 3.114 and Exercise 3.15 above.]

Exercise 3.118. Let T': P(X) — P(X) be a monotone set operator. We say T is transitive if
T(A) CT(T(A)) for every A C X.

(a) Show that T' = T for < C X? (recall Definition 3.32) is transitive iff < is.

(b) Show that T° o T' is transitive and pointwise C 7', meaning (7° o T')(A) C T'(A) for all A.

Moreover, it is the pointwise largest such monotone set operator.

(c) Show that TS o T = T, where < is the transitive closure of <.

(d) Show that T(@) = T° o T(2). [Show T° o T(2) C T(T° o T(2)), and apply 7]

(e) Deduce the preceding exercise.

One important application of transitivity is a more powerful version of the principle of well-founded
inductive definition from Theorem 3.44. In that previous version, we needed to provide codomain
sets Y, into which the function we are defining maps; as noted in Remark 3.95, such a restriction
was necessary in the proof we gave via Knaster—Tarski, but is inconvenient in some cases when we
are trying to inductively define objects in the universe outside of any sets we start with. We may
now remove this restriction, by giving a different proof:
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Theorem 3.119 (principle of well-founded inductive definition, unbounded codomain version). Let
< be a well-founded relation on a set X, let (Y;),ex be a family of classes, or more precisely a
single class relation (class of pairs) Y with Y, := Y[{z}], and let

(Fgc I[v. - Yx> .
xT

z<x

be a family of functions, or more precisely a single class function F(x, ). Then there is a unique
[ € Il,ex Yz such that for each z € X,

(%) f(x) = Fo((f(2))z<2)-

Proof. The proof of uniqueness from Theorem 3.44 still works.

For existence, first suppose < is a partial well-order <. Note then that for any x € X, .2 C X
is <-downward-closed, and so the function f satisfying (x) we are trying to define will restrict to
the function defined inductively via the same (F}).<; on (<, <|}<x); moreover, to compute f(z),
it suffices to know such a restriction f||z. - N

We thus prove by <-induction that for each = € X, there is a (unique, as shown before) function
fo € [1.<, Yz satisfying (*). Assume such f, € [], <, Y. exist for every z < x. Then J,_, f. is
a function on 1.z, since for two z,2’ < x, both f2, f» restrict to the same function on | .w (by
uniqueness) for every w < z,2/, whence f.(w) = f.(w). Moreover, |J,_, f- € [[,., Y- satisfies
(x), since every f, does. Now extend this to f; € [[,., Y- by defining f,(x) according to (x); this
completes the induction. Finally, take f :=J,cx fa; this is a function for the same reason as before.

If < is merely a well-founded relation, apply the above to its transitive closure <. O

Proposition 3.115 clarifies the nature of the one-way simulability relation <: it contains at
least the reflexive transitive closure < of the underlying relation <. Clearly, < also contains the
bisimilarity relation ~. Moreover, by Corollary 3.116, we may understand < for general < in terms
of < for the transitive closure <. We will show (see Corollary 3.126) that < on a partial well-order
< is just the composition of < and ~; hence, < between general well-founded relations is the

composition of reflexive transitive closure and bisimilarity.
Proposition 3.120. For an irreflexive linear order < C X2, we have T<(<)=<.

Proof. 2 by Proposition 3.115. Now suppose = T<(<) y, i.e., every 2’ < z is <y’ <y for some y/'.
If z £ y, then by linearity, x > y, whence y < 3/ < y for some 3/, contradicting irreflexivity. O

Exercise 3.121 (cf. Proposition 3.83). Let <y C X2 and <y C Y2, with at least one well-founded.
Then Sxy is the unique T<-fixed point in P(X x Y).

Proposition 3.122. Let < C X? be a partial well-order. The following are equivalent:

(i) < is linear, i.e., a well-order.

(i) < is (strongly) extensional, ie., (<x,x) = (=x).
(iii) (Sx.x N2x.x) = (=x)-
(iv) (Sx.x) = ().

Proof. (ii) = (i): We prove every = € X is comparable with every y € X, by induction on z.
Assume (IH1) every 2/ < z is comparable with every y € X. We now induct on y: assume (IH2)
every y' < y is comparable with x. If some 3’ < y is > x, then x < ¢/ < y so we’re done. Otherwise,
every vy <yis <z, ie., .y C |_z. Similarly, if some 2’ < z is > y, then y < 2/ < z so we’re done.
In the remaining case, we have | _x = | _y, so x = y by extensionality.

(i) = (iv) by the two preceding results; (iv) == (ili) == (ii) are obvious. O

Exercise 3.123. Which implications above still hold in the absence of well-foundedness?
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Proposition 3.124. Let <x C X? and <y C Y? be two well-orders.

(a) ~x,y € X xY is a partial isomorphism, either between X and an initial (i.e., <y-downward-
closed) segment of Y, or between an initial segment of X and all of Y.
(b) (Sxy NZxy) = (Rxy)
(©) (Sxy)=(Syomxy)ie, v Sxyy <= W (@=xyy <y <= ~xy(@) <v.
Proof. (a) Its domain and codomain are initial segments by definition of bisimulation, it is a partial
bijection by Exercise 3.99, and a partial isomorphism because it is a bisimulation. If there were both
some x € X \ dom(~yy) and some y € Y \ rng(<x,y), then taking the least such z,y, we would
have Vo' < 3y’ < y (2’ = ') (namely the unique such ¢/, since 2’ € dom(<xy)), and similarly
vice-versa, whence x =~ y, a contradiction.
(c) 2 because the RHS is a simulation (using Proposition 3.115 for <y ). Conversely, suppose
z Sxy y. If 2 € dom(=y y), then letting « < v/, we have ¢/ =~ = < y, whence y' <y, whence y’ <y
by Proposition 3.122. Otherwise, by (a), we instead have some 2’/ = y; but then we similarly get
zSy~a = x <2, acontradiction since dom(<x y) must be an initial segment of X.
(b) follows easily from (c). O

Proposition 3.125. Let < C X? be transitive. Then the induced relation <y /~ on the strongly
extensional quotient as in Definition 3.87 is also transitive, hence a well-order if < was well-founded.

Proof. If C' <x/~ D <x/~ E, then for every z € E, there is y € D with y < z, and then there is
z € C with x < y, whence x < y < z, which shows C' < FE. O

Corollary 3.126. Let <x C X2 and <y C Y? be two partial well-orders.

(b) (SxyNzxy)=(=xy)
(©) (Sxy)=(Syomxy), ie,zSxyy < I (z~xyy <y).

Proof. (b) follows from Proposition 3.124(b) and = = [z] (Proposition 3.88).
(c) similarly follows from Proposition 3.124(c), via a diagram chase:

2 € X s Y 3y

A

[] € X/ ~~ Y/z 3 [y]

If v Sxv y, then [z] < 2 Sy ~ [y] (3.88), whence there is [x] ~ D < [y] by Proposition 3.124(c),
whence there is 3’ € D such that 3’ <y (3.87), whence z = [z] = D = ¢/'. O

Exercise 3.127. Find transitive non-well-founded relations for which (b) above fails.

Definition 3.128. The well-ordered quotient of a well-founded < C X? is the extensional
quotient of the transitive closure <; we denote it by X/Sx x (due to Corollary 3.131 below).

This combines the two methods of “simplifying” a well-founded relation we have discussed:

. idx s
arbitrary well-founded (X, <) — (X, <) transitive

extensional (X/=, <) ------*- ¥ (X/S, <) well-order
Corollary 3.129. The quotient map (X, <) —» (X/<, <) is contained in <N 2.
Proof. idx is by Proposition 3.115; the right quotient map is a bisimulation by Proposition 3.88. [

Corollary 3.130. For well-founded <x, <y, we have [z] Sx/<y/< [y <= = Sxy ¥- O
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Corollary 3.131. X/< is also the quotient of X by <N >. O
Corollary 3.132. The quotient map (X, <) — (X/<, <) descends to (X/=, <). O

Exercise 3.133. Give an example where this descended map is not a bijection, i.e., where <~ on
(X, <) is strictly coarser than on (X, <).

Corollary 3.134. For arbitrary well-founded <x, <y, we have
() (Sxy)=(Syo(SxyNZxy))sie,zSxyy < W (@ (SN2 Y <y).
Proof. Follows from Corollary 3.126(c) and Corollary 3.129. O

Corollary 3.135. < is a global linear preorder between all well-founded relations: for well-founded
<x,=y,any x € X and y € Y are comparable.

Proof. By Proposition 3.124(a), WLOG ~x/< y/< is an isomorphism between X/ and an initial
segment of Y/<. Then [z] = [¢'] for some 3/ € Y, and [¢/], [y] are comparable, hence so are z,y. [

As with the Mostowski collapse, we would now like to replace the well-ordered quotient X/<
with a global invariant for the equivalence relation <N 2.

Definition 3.136. Let < C X? be a well-founded relation, with transitive closure <. The <-rank
of x € X is its <-Mostowski collapse

p(x) = p<(x) =4 (2) = {<¥) [y <z} ={p(y) | y <z}

by Corollary 3.114 and Exercise 3.15 as in the proof of Proposition 3.115, this is
={p(y) |y <z or 3z <z (y < 2)}
={p() |y =2t UU,<.{p(¥) | ¥ <y}
={p(y) ly <z} VU, p(y)
= U= (p(y) U{p(®)}).

The rank of (X, <) is p[X] = 4. [X].

Remark 3.137. As in Remark 3.95, this inductive definition is justified by Theorem 3.119.

Example 3.138. For < = successor on N, we compute

p(0) =2, 0=0

p(1) = p(0) U{p(0)} = {p(0)} = {2}, 1 ={o},
p(2) = p(1) U{p(1)} = {p(0), p(1)} = {@,{@}}, 2 ={{a}},
p(3) = p(2) U{p(2)} = {p(0),p(1),p(2)} = {2, {2}, {2, {a}}}, 3 ={{{a}}}.

(Of course, we will soon define N by declaring p here to be the identity; see Axiom 3.152.)
Corollary 3.139. For well-founded <x, <y, we have
v Sxyy < p@) € py),
z(SNZ)y < plx)=py).

Here p(z) € p(y) means the reflexive closure of €, i.e., either p(x) € p(y) or p(x) = p(y). In fact,
it is equivalent to C; see Proposition 3.149.

Proof. By Corollary 3.116 and Proposition 3.124,
r Sy <= ID e Y/S (7] =x/<v/< D < [y]),

which after replacing the extensional quotients X/<,Y/< with the isomorphic Mostowski collapses

becomes precisely p(z) € p(y) (i-e., p(z) < p(y) in the well-order < = € on p[Y]). O
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3.G. Ordinal numbers.

Proposition 3.140 (cf. Proposition 3.105). For a set «, the following are equivalent:

(i) o is transitive and €, C a x a is a well-order.
(ii) « is transitive and €, is a partial well-order, i.e., transitive and well-founded.

(iii) « is transitive, each 5 € « is transitive, and €, is well-founded (i.e., Foundation for «).
(iv) €q is a partial well-order and {. = id,.

(V) €q is a partial well-order and o = {c[a].

vi) €, is well-founded and pe, = id,.
(vu o is Well founded and o = pelal.

a = {[X] for some partial well-order < C X2

ix) a = $<x for some partial well-order < C X2 and = € X.

x) a = p<[X] for some well-founded relation < C X?2.

(xi) o = p<(z) for some well-founded relation < C X2 and z € X.

Proof. (i) <= (ii) by Proposition 3.122 (since € is always Extensional by the Axiom).
(i) <= (ili): €4 is transitive iff

)
)
) €
) €
i) €
) €
ii)
)
)
)

hbyeca & devyepfea = d€f;

each § € « is transitive iff this holds without assuming 6,7 € «; but these follow from the second
antecedent by transitivity of c.

(ii) <= (iv) as in Proposition 3.105.

(iv) = (v) = (viii) and (vi) = (vii) = (x) are obvious.

(iv) = (vi), (v) = (vii), (viii) = (x), and (ix) = (xi): By transitivity, { = p.

(x) = (viii) and (xi) = (ix): By definition of rank, p = {_.

(viii) = (ix): Add a new greatest element to X (as in Proposition 3.105).

(ix) == (viii): Replace X with |_x.

(vi) = (i): Transitivity by Proposition 3.105; well-order because (a, €) = (X/~, <). O

Definition 3.141. An ordinal number is a set obeying the above equivalent conditions.
The class of all ordinal numbers is denoted ON (also known as Ord or 0o'?), and ordered via

a<f <= a€cp.
Proposition 3.142. ON is a transitive class, i.e., every element of an ordinal is an ordinal; and €

is a well-order on the class ON, where well-foundedness means:

(a) The principle of transfinite induction: if B C ON is a subclass, and every a € ON with
a C Bisin B, then B = ON.

(b) Equivalently, every class @ # C' C ON has a €-minimal element.

(c) In particular, this holds for nonempty sets C' of ordinals.

Proof. Transitivity follows from e.g., Proposition 3.140(v).

€ is a linear order by Corollary 3.139, since < is by Corollary 3.135.

To prove (b): let a € C. If « is least in C, we're done. Otherwise, there is f € a N C, whence
anNC # @. Since aNC C q, it has a €-least 8, which is also €-least in C since « is transitive. [

Corollary 3.143 (Burali-Forti paradox). ON is a proper class.
Proof. Otherwise, it is an ordinal, whence ON € ON, contradicting well-foundedness. O
Corollary 3.144. For a set of ordinals A, there is a minimum excluded ordinal mex A ¢ A. O

Thecause ON obeys the same properties as the ordinals, except for being a proper class, hence can be thought of
as an “absolute infinity” bigger than all ordinals; see Corollary 3.143
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Proposition 3.145. For a set of ordinals A, mex A ={a € A|a C A}.

Proof. If o € mex A, i.e., @« < mex A, then a € A by definition of mex, and also every 8 < « is
< mex A, hence in A, which means oo C A.

Conversely, if « € A and o C A, i.e., every 8 < « is in A, then we cannot have mex A < « since
mex A € A; thus a < mex A, i.e., @ € mex A. O

Corollary 3.146. If « is an ordinal, then mex(«) = a. O
Example 3.147. There is a least ordinal
0:=mexd =,
and a next least
1 :=mex{0} = {0},
and a next least
2 :=mex{0,1} = {0,1},
etc. Note however that mex{1} = 0.
Remark 3.148. For a set of ordinals A C ON, to say that A is transitive is to say that A is
<-downward-closed, in which case A is the set of all ordinals less than it.

Proposition 3.149.

(a) < on ON is the same as C.

(b) A set of ordinals A has a least upper bound sup A = |J A, and a greatest upper bound
infA=minA=Aif A+# @.

(c) A set of ordinals A has a least strict upper bound supt A := . A= AU|JA =supyes ™.

(d) An ordinal o has a successor ot := supt{a} = aU{a} (usually o+ 1; see Example 3.162).

Proof. (a) is true for any linear order: a <b <= |_a C | _b. (If a > b, thenbe |_a\ ] b.)

(b) follows since | and [ are sup and inf more generally for sets, and since the infimum must be
achieved since A has a least element.

(c): To say sup™ A is the least strict upper bound for A means its elements < sup™ A must
include every element of A but no other element > every element of A, i.e., sup™ A must consist of
all elements < some element of A, i.e., sup™ A = |- A, i.e., sup™ A consists of all elements = or <
some element of 4, i.e., sup™ A = AU A.

(d) follows. Note also that to be a strict upper bound for every element of A means to be a
non-strict upper bound for their successors; thus sup™ A = sup,c4 ™. ]

Remark 3.150. Definition 3.136 of rank of well-founded < C X? now says
p(x) = supy_, p(y),
p[X] = sup,_x p().

Definition 3.151. An ordinal o« which is neither 0 nor a successor is called a limit ordinal. In
other words, 0 < «a, and for every 3 < a, we have a # 7, whence 8+ < a.

Axiom 3.152 (Infinity). There exists a smallest limit ordinal, called N or w.
Under the Axiom of Infinity, the ordinals look like:

0<1<2< - <w< wh <wtt <o <supPHw,wh,wtt, ...} <
=w+1 =w+2 =:wtw
We see that while w is an “infinite” number, it is actually the smallest “infinity”; thus we use the
more precise symbol w, rather than co. (As noted above, when oo is used in a context involving
ordinals, it usually denotes the “absolute infinity” ON.)
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Exercise 3.153. Suppose there exists a set X which contains @ and is closed under the operation
x +— xU{z}. Then by Knaster—Tarski, there is a smallest such X. Prove (without using Infinity
or Foundation) that X is then transitive and €x is transitive and well-founded, hence X = N.
Thus the Axiom of Infinity may also be stated as: there is a set containing @ and closed under
x +— xU{z} (whence there is a smallest such set N).

Definition 3.154. Zermelo—Fraenkel set theory ZF consists of the 7 axioms of ZF~ — Infinity
from Definition 2.26, plus the Axioms of Foundation 3.100 and Infinity 3.152.

ZF~ is the same but without Foundation.'® The modern encoding of naturals (and more generally
ordinals, i.e., well-orders up to bisimilarity /isomorphism) is called the von Neumann encoding.

By Exercise 3.153, we have the
Principle of ordinary induction. If B C N contains 0 and is closed under successor, then B = N.
Proposition 3.155. Successor is injective on ordinals: if a™ = 87, then o = S.

Proof. This holds in general for linear orders (assuming successor exists). From a < at = 7, we
get a ¥ B, whence a < 5. Similarly, 5 < a. O

Exercise 3.156. Is x — x U {z} injective on all sets? [The answer depends on Foundation.]

It follows from Proposition 3.155 that the (graph of the) successor function on N is indeed the
graph we think it is: that each 0 # n € N is the successor of a unique m € N (existence by the last
condition in Knaster—Tarski; uniqueness by Proposition 3.155). Thus, the definition of N as the
smallest closed under blah blah is induced by a well-founded relation; and so by Theorem 3.119,

Principle of ordinary inductive definition. Let (Y,),cn be a family of classes, and let
Fy € Yy,
Foi1:Y, = Yo
for each n. Then there is a unique f € [],,cy Yn such that
f(0) = Fo,
fn+1) = Fupa(f(n)).

Of course, by Proposition 3.142, we already have the principle of transfinite induction for all
ordinals, of which strong induction for N is simply an initial segment. Similarly, we have the

Theorem 3.157 (principle of transfinite inductive definition). Let (Y, )acon be a family of classes,

F, : )
( o H YB - Ya acON
BEa

be a (class) family of functions. Then there is a unique (class) f € [, con Yo such that

fla) = Fo((f(B))s<a)-

Proof. For each ordinal «, by Theorem 3.119, there is a unique f, € [] B<a YB obeying this inductive
definition. And for o < 3, f, agrees with fz on a C 3, since the latter also obeys this inductive
definition. So the desired f is |J,cqon fa- O

1876rmelo set theory Z™~ is missing Foundation and Replacement, but includes Infinity; see (2.27). In fact, Zermelo
originally introduced the “wrong” version of Infinity, where n is encoded as {{---{@}--- }}; in other words, as the
Mostowski collapse with respect to the successor graph, rather than the < relation. It turns out that this version of
Infinity is insufficient to prove the nowadays standard version, i.e., on some foundational level, strong induction really
is stronger than ordinary induction!
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3.H. Ordinal arithmetic.

Definition 3.158. The sum of two ordinals «, § is defined by induction on g as follows:

a+p:=aU{a+vy|v< 8}

)« if =0,
sup;r</8(oz—|—7) if B> 0,
« if =0,
= (a+)* if 3=,
sup,.g(a+7) if B is a limit ordinal.
Exercise 3.159. How do these definitions fit into the formalism of Theorem 3.1577

Proposition 3.160. The three definitions above really are equivalent.

Proof. First, we show that the first two definitions are equivalent, by induction on . Assume (IH)
that for all v < 3, we have

« if v =0,
aU{a+d6|d<y} =
{ | i {sup;«/(a +9) ify>0.
If =0, then aU{a+v |~y < B} = a, as desired. Otherwise, we must show
aUfa+y|y<B}=sup_z(a+7)

where by the IH, the o+ on both sides are the same. Everything in the LHS is either in o = a 40,
hence in the RHS, or clearly in the RHS. Conversely, everything in the RHS is < a + « for some
v < B3, hence either equal to o + « which is in the LHS, or in a4+, hence in a U{a+ 4§ | d <~} C

LHS by the IH.
Next, note that by either the first or second definition,

Proposition 3.161. + is strictly monotone in the second argument: v < f —= a+v < a+p. O

Now we check that the second and third definitions are equivalent. If 3 = 4", then by monotonicity,
the largest o+ § among § < 3 is o+ 7, hence the second definition reduces to (a +~)*. And if 3 is
a limit ordinal, then by strict monotonicity, the set of a + ¢ for § < § has no upper bound either,
hence the sup™ reduces to a sup. O

Example 3.162. For any ordinal o, we have
a+0=q,
a+l=(a+0)*"=at.
(So from now on, we will rarely write a™.) The second clause of the above definition becomes
a+(y+1)=(a+7)+1
Proposition 3.163. + on ordinals is associative: (a+ ) +v=a+ (8+7).
Proof. By induction on «. If v = 0, both sides simplify to a + 5. Otherwise,
(a+B) +7 =sup;_ ((a + B) +8) = supj__ (a + (B +9)) = a+ (6 +7),

using the IH in the middle step, and in the last step that {a+(8+9) | 0 <~} and {a+¢c | e < S+~}
have the same downward-closure by definition of 3 + ~. O

Exercise 3.164. Prove that 0 + o = « for every ordinal a.
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Example 3.165. We have 1 +w =sup™{1+0,1+1,1+2,...} = w # w+ 1. It follows by induction
that 1 + o = a # a+ 1 for any a > w.

Proposition 3.166. + on naturals is commutative: m +n = n + m for all m,n € N.
Proof. First, we prove 1 +n = n + 1 by induction on n. We have 14+0 =1 =0+ 1. Assuming
14+n=n+1, we have
1+ (n+1)=(1+n)+1 by definition of +
=(n+1)+1 byIH.
We now prove it for arbitrary m by induction on n. We have
m+0=m by definition of +
=0+4+m by Exercise 3.164.
Now suppose m +n =n + m. Then
m+ (n+1)=(m+n)+1 by definition of +
=(n+m)+1 byIH
=n+ (m+1) by definition of +
=n+ (1+m) by previous case
= (n+1)+m by associativity. O
Exercise 3.167. Prove that 4 is weakly monotone in the first argument: a < g = a+vy< g <.
Exercise 3.168. Prove that a < g iff a + v = 8 for some v, and in that case, v is unique.

Exercise 3.169. Let  be an ordinal, and (a),<g be a family of ordinals. Define the indexed
sum ) g, by induction on 3 as follows:

D<o @y =0,
DBl Oy T Doyep Oy O,
D < Qy 1= SUPsg D5y for a limit ordinal .
(a) How does this inductive definition fit into the formalism of Theorem 3.1577
(b) Verify that > ay =agand 3 oy = ap + 1.
(c) Prove that . ;1= p5.
a special case, define the product of ordinals «, 8 by

a-fi=3 g

As

(d) Conclude that a-1=a=1-a.
(e) Prove that -0 =0=0"a.
(f) What are w -2, 2 - w?

We now give another perspective on ordinal sums and products. Let (X, <x) be a well-ordered set,
and for each z € X, let (Y, <y, ) be a well-ordered set. Recall from Definition 2.76

Lex Yo ={(z,y) |7 € X & y €Y, }.
The lexicographical order <jx on | | .y Y is defined as in 3.24, and is a well-order as in 3.25.

(g) Prove that p<, [l |,ex Yz] = 22, ()<pix) P¥2]- In particular, po [, cg0n] =32, 5.
(h) Prove the indexed associative law: for any ordinals v, (85)s<, and (se)s<~,c<3s>

26<"/ Ea<ﬂ5 Qe = 2p<lex (6,:6)<>5<~ Bs Qe

(i) Conclude that - on ordinals is associative and distributes over ) on one side [see (f)].
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Exercise 3.170. Prove that - on naturals is commutative.
Exercise 3.171. What can you say about monotonicity of -7

Exercise 3.172. Let 8 be an ordinal, and () <g be a family of ordinals. Define the indexed

product H7 < Oy inductively as follows:

Hv<0 Qy 2= L
H«/<B+1 Qy = (Hv<6 ay) - g,
[T,<poy :=supsp[],c50y fora limit ordinal 5.

In particular, for two ordinals «, 8, define ordinal exponentiation

o = [[<po
(a) What is 0%? More generally, what is ]
(b) What is 1%7
(c) What is 2“7 [See Footnote 19.]
(d) Prove that (m -n)¥ = mF - n* for naturals m,n, k. Give a counterexample for ordinals.

i —0?
y<B Oy if some o, = 07

For a linearly ordered set (X, <x) and partially ordered sets (Y, <y, )zex, the lexicographical
order on ],y Y is given by

U<lex 2 = Fr € X (y, < 2 & Vo' <2 (yp = 22))-

(e) Verify that this is a partial order.
(f) Verify that if <x is a well-order and each <y, is a linear order, then <) is linear.

(g) Show that even if <x and each <y, are well-orders, <jex might not be.

Now suppose >x := <x '

0, €Y,. Let

is a well-order, and each <y, is a well-order, hence has a least element

Bocx Yo = {7 € [Toex Yo | {z € X | yo # 0} is finite}.

(Finite means there is a bijection with some n € N; see Definition 3.205.)

(h) Prove that <je restricted to @,y Y, is a well-order.

(i) Prove that po [P,cx Yzl = HP>X(:B)<p>X[X] plYz].  In particular, pc [D.,504] =

[,<5ay if every ay # 0 (otherwise apply (a)), where P uses the order > on f.
: : Bs _
(j) Use this to prove that a2s<+% = [Ts<, o,
We have built up the most fundamental number system N from the axioms of set theory.

Developing other number systems, like Z, QQ, is really part of algebra; we give a brief sketch:

Exercise 3.173. A commutative monoid is a set IV equipped with an associative and commutative
binary operation + with an identity element 0. It is cancellative if moreover,
T+Y=xr+2 — Yy==z2.
More generally, a submonoid M C N is cancellative if this holds for all x € M and y,z € N.
(a) Given a cancellative submonoid M C N, define an equivalence relation ~ on N x M by

(a,b) ~ (¢,d) <= a+d=b+ec.

Then (N x M)/~ is an abelian group with an injective homomorphism N — (N x M)/~.
(b) Applied to M = N := N with + from Definition 3.158, this yields Z.
(c) Applied to N :=Z, M := N\ {0}, and + := -, this yields Q.
(d) If moreover N is a rig, meaning equipped an associative and unital operation - distributing
over +, then (N x M)/~ becomes a ring under [(a,b)] - [(c,d)] := [(ac + bd, ad + bc)].

19VVarning: this is distinct from cardinal product; see Remark 4.32. Unlike the indexed sum, the indexed product
of ordinals doesn’t even have the same cardinality as the cardinal product.
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3.1. The revenge of Knaster—Tarski. Recall that the proof of Knaster—Tarski given in Theo-
rem 3.6 was “top-down” or impredicative (Remark 3.13). Using transfinite induction, we now give a
“bottom-up” proof, that also has the benefit of generalizing to proper classes (to a certain extent).

Definition 3.174. For a class X, the powerclass P(X) = {A | A C X} is defined as before
(Example 2.6). Note that this is now the class of all subsets of X, since the elements of a
comprehension must be sets. In particular, if X is a proper class, P(X) has no greatest element.

Definition 3.175. Let X be a class. A monotone set operator 7 : P(X) — P(X) means the
same thing as in Definition 3.1, i.e., a monotone class function mapping each subset to another.
Given such T, if we instead have a subclass A C X, we define

T(A) = H{T(B) | B < A}
={z|3IBC A(x € T(B))}.
Again, here B ranges over all subsets. Note that if A happens to be a subset, then there is a largest

such B C A, namely A; hence this agrees with the original value of 7" on A (using monotonicity).
We say a subclass A C X is T-closed if T(A) C A, i.e., T(B) C A for every subset B C A.

Theorem 3.176 (Knaster—Tarski II). Let X be a class, T : P(X) — P(X) be a monotone set
operator, A C X be a subset. Define sets A, C X for each o € ON by induction as follows:

Ay :=A,

Agy1 = A UT(Ay),

Aq = Upey Ap  for a limit ordinal .
This is equivalent to

Aq = Upea(AgUT(Ap)) for a >0,

Ao = AUUg, T(Ap) for all a.
Then (Aq)qa is @ monotone transfinite sequence, ie., 8 < a = Ag C A,; and

T(A) = Uae@N AO‘
is the smallest T-closed subclass of X containing A. Moreover, if A C T'(A), then we have
A()c+1 = T<Ao¢)7
Ao = Upeo T(Ap) for a >0,

hence T(T'(A)) = T'(A). In particular, this holds for A = @. (See the picture (3.14).)

Proof. First, we assume that A C T'(A). We take Ap := A and the last equation as the definition
of Ay for a > 0. We then have A, C T'(A,) for all a: for o > 0, assuming Ag C T'(Ag) C A,
for all 8 < «, we have T(Ag) C T(Aq) for all 8 < o, whence Ay = g, T(Ap) € T(An). Then
f<a = Ag CT(Ag) C Ay, i.e., the sequence is monotone. It follows that all of the definitions
of A, are equivalent, except for A, = s<a Ap for limit «; this one is clearly C the last equation,
while for 8 < «, then f + 1 < «, whence T'(Ag) = Agy1 C Uﬁ<a Apg. Thus the definitions agree.
We now verify that T(A) C X is the smallest T-closed subclass containing A. If B C X is
any T-closed subclass containing A, then we prove T'(A4) = |J, Aa C B, i.e., 4, C B for all a,
by induction on a: we have Ag = A C B, and for o > 0, assuming Ag C B for all 8 < «, then
T(Ag) CT(B) C B for all B < «, whence Ay = s, T(Ag) € B. We have A = Ay C T(A). To
show T(A) is T-closed, let B C T(A) be a subset, and for each z € B, let a, be least such that
T € Aa,; then letting o := sup, ¢ @z, we have B C A,, whence T(B) C T(As) = Aat1 C T(A).
This concludes the proof assuming A C T'(A) for all A € P(X). To deduce the general case,

apply the special case to T'(A) := AUT(A), or to Ta(B) := AUT(B) from Exercise 3.15. O
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In the case where A C T'(A), so that A,+1 = T(Aa), it is convenient to think of A, as the “ath
iterate of T" of A”:

A if « =
To(A) = iHa=0,
Usea T(TP(A)) if > 0.
(It is literally (T'o---oT)(A) when o € N.) Then thinking of ON as “c0”, we write
T*(A):=T(A) =1 T*(A).
In particular, we may always write these for A = &.

Definition 3.177. For a monotone set operator T : P(X) — P(X) and x € T(@) = T>™(2), the
T-rank of x is

a<oo

pr(z) := min{a € ON | z € T (2)}.
(Note that the least 8 with z € T%(@) must be a successor, since T°(2) = Ua<p T%(@) for limit 3.)

Exercise 3.178. For a well-founded < C X?, we have p = pr._.
(In particular, the sequence T%(2) C T'(2) C --- may take arbitrarily long to stabilize.)

Example 3.179. Let QT be the positive rationals, and let
T:P(Q%) — PQ")
Ar—{1}U{g+1]qge AyU{q! | g€ A}.
The first few iterations look like:

21 3 3| 4

T2(2) T3 ()

\][V)

1
3 )

T4(2) 5

no|ot
Ol
W

=

T(2)

2)

This T is inductive, so QT = T°(@); in fact, T¥(@) = U, ., T"(D) is already T(2), since
anything derivable from it is already derivable from 7" (@) for some finite n, hence is in 77! (2).

This is a general piece of extra information that the “bottom-up” proof of Knaster—Tarski yields:

Proposition 3.180. Suppose a monotone set operator T : P(X) — P(X) is finitary, meaning
that whenever = € T(A), then z € T(B) for some finite B C A.?° Then the transfinite sequence
(As)acon from Theorem 3.176 stabilizes at A, ie., A, = A, for all @ > w. Thus T(A4) = A..
Moreover, T : P(X) — P(X) is also finitary; and if 7' maps finite sets to countable sets, then T
preserves countable sets.

Proof. If v € T'(A,,), then there is a finite B C A, = |, ,, An such that x € T'(B), whence B C A,
for some n, whence © € T(B) C T(A,) C Apt1 C Ay; thus A, is T-closed and contains Ay = A,
and is contained in T'(A) by definition, hence is equal to T(A). This proves the first claim.

To show that T is finitary: if T} : P(X) — P(X) are an arbitrary family of finitary monotone set
operators, then it is easily seen that A — | J, T;(A) is finitary as well. Also, if S,T : P(X) — P(X) are
both finitary monotone, then so is S o T, since if x € S(T'(A)), then x € S(B) for a finite B C T'(A),
and each y € B is in T(Cy) for a finite C,; C A, whence letting C' := UyeB Cy, we have B C T(C),
whence z € S(B) C S(T(C)). It follows by induction that for each a, A Ay = AU g, T(A4p)
is finitary; in particular, T'(A) = A, is finitary.

Finally, suppose T maps finite sets to countable sets. Then T also maps countable sets to

countable sets, since if A = {xg,z1,...} is countable, then T'(A4) = U,,., T({z0, %1, ..., 2n_1}) since
T is finitary. By induction, we then easily have that for any countable ordinal o, if A is countable,
then so is Ao = AU Uz, T(Ap); in particular, T'(A) = A, is countable. O

200ther synonymous terminology include of finite character, Scott-continuous.
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Corollary 3.181. For a finitary T on a class X, T-closure preserves sets. O

Remark 3.182. Analogous bounds hold for cardinalities higher than countable; see Corollary 4.51
and Exercises 4.71 and 4.93. (Indeed, the definition of monotone set operator can be regarded as
saying that T is “set-ary”: whenever x € T'(A) for a class A, then x € T'(B) for a subset B C A.)

Example 3.183. For an algebraic structure X as in Example 3.4 equipped with finitary operations
fi : X™ — X, where n; € N, the T which closes under the operations is finitary. (Example 3.179 is
a special case, where we only have nullary and unary operations.)

If there are moreover only countably many such operations (i.e., the index set I is countable), then
T maps finite A to a countable union of finite T'(A4) = |J, fi[A™], whence we get that a countable
subset A C X generates a countable subalgebra T(A) C X.

For example, the subgroup or subring of R generated by a countable subset is countable, etc.

Example 3.184. In contrast, consider P(R) equipped with the countable Boolean operations
(union, intersection, complement). Let A C P(R) denote all countably many open intervals (a, b)
with rational endpoints a,b € Q. Note that we may close A under countable Boolean operations via

T:PR) — P(R)
A— {R\ U,c; Ai | I countable, (A;)icr € AI}.

Applying T'(A) once already yields all closed sets, of which there are uncountably many. The
transfinite sequence Ay C A; C --- looks like:

o Ay: all closed sets

e Aj: all Gs = countable intersection of open sets, e.g., R\ Q

e As: all countable intersections of F, sets, e.g., all normal numbers z € R (meaning every
finite block of n digits occurs in x with average density 10~").

It turns out that this sequence does not stabilize at any countable ordinal stage!

Proof sketch. One can show by induction that for each countable ordinal «, there is a set U, C R?
such that the “vertical cross-sections” (Uy)s = {y € R | (z,y) € Uy} for each = € R are precisely all
of the sets in A,, and the diagonal D, = {x € R| (z,x) € Uy} is also in A,; essentially, one defines
(Ua)z to be the complement of the intersections of certain (Ug),’s for f < a as specified by the digits
of z. But then, Cantor’s diagonalization argument (Theorem 2.9) shows that R\ D ¢ A,. O

Remark 3.185. This sequence is called the Borel hierarchy A, = ITI? in descriptive set theory.

There is an analogous hierarchy of maps R — R, obtained by starting with the continuous maps
and then repeatedly closing pointwise limits of sequences, called the Baire hierarchy, which also
takes uncountably many steps to stabilize at the class of Borel-measurable maps R — R.

Exercise 3.186. Show that for a monotone set operator T': P(X) — P(X) on a class X, the
T-interior T°(A) (cf. Exercise 3.68) of every subclass A C X exists, and is a set if A is.

Exercise 3.187. Let
T : P(ON) — P(ON)
A — mex(A)T.
(a) Prove that T(A) = ON for any subset A C ON, which is not very interesting.
(b) For a € ON, consider the transfinite sequence (ag)scon in Theorem 3.176 used to build
T(a). Verify that the various definitions of this sequence in Theorem 3.176 correspond to
the various definitions of a + § in Definition 3.158. Using this, deduce Proposition 3.160.
(c¢) In a similar manner, deduce that - from Exercise 3.169 may also be defined via

a-f=sup,gla-v+a)

[Hint: instead of T'(c), take T, (9) for a suitable T,, depending on «.]
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3.J. Transitive closure, €-induction, and the cumulative hierarchy. The axioms of set
theory yield two basic monotone set operators on the universe V, namely | J and P. Note that?!

(3.188) UACB < ACP(B)
for any classes A, B C V. Thus in particular, A is | J-closed iff it is P-open, iff it is transitive.

Definition 3.189. The transitive closure of a class A is the smallest transitive class (JA D A.
Since |J is clearly a finitary (indeed unary) monotone set operator, by Proposition 3.180,

Ud=AuUAauvUlUAu - =U,enU" 4

in particular, the transitive closure of a set is still a set.??

Example 3.190. J{{2}} = {{o}}u{g}u o = {{2}, 2} = 2.

Corollary 3.191. For every set x, there is a set X containing x such that z = { .

Proof. Let X = J{z} = {z}UzuJzuUJUz U---; then for every y € X, by transitivity,
texy={zeX|zeyf={z]z€y} =y m

Corollary 3.192 (Axiom (Schema) of (€-)Induction). Assume ZF, and let ¢(x) be a property. If

e for every set z, if every y € x satisfies ¢(y), then ¢(z),
then for every set z, ¢(x). In other words, the global € relation on V is well-founded.
Proof. To show ¢(z), by Foundation, we may do €x-induction on X = [J{z}. O

Remark 3.193. Conversely, clearly well-foundedness of the global € implies well-foundedness of
€x on each set X, i.e., Induction implies Foundation.?® This is analogous to the passage between
well-foundedness of each ordinal « versus well-foundedness of the entire class of ordinals ON in
Proposition 3.142.

Exercise 3.194. Every class A also has a transitive interior P°(A) by Exercise 3.186. Show that
P(A)=ANPA)NPMPA)N---

This covers two possible combinations of closure/interior and | J/P, that are related via (3.188).
What about the other two combinations? One of them is again related to Foundation: note that

(3.195) PA) ={z|Vyecax(yec A)} =Tc(A)
is the monotone set operator induced (as in Definition 3.32) by the relation € C V2.

Definition 3.196. The von Neumann cumulative hierarchy is the transfinite sequence used
to build P(@) as in the Knaster—Tarski Theorem 3.176:

Vo :=P@
Vi :=PHo
Va = P*(2) = {2, {2}},
Vs :=P%(2) ={o,{e},{{z}}.{2.{2}}},
Vo :=PD) = Ugco P(Va)-
Thus, Va := P(9D) is the well-founded part of the universe. The rank p(x) of x € V, is its €-rank
p(x) == pe(xz) =min{a € ON | z € Voy1 =P(Vo)}.

210 other words, |J and P form a (monotone) Galois adjunction P(V) = P(V).
221¢ turns out that this fact cannot be proved without the Axiom of Infinity!

:@7

= {1},
={

~— ~— — ~—

230nce again, in the absence of Infinity, Induction is strictly stronger than Foundation.
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Corollary 3.197. Assuming only ZF~ — Infinity, Induction (hence Foundation, assuming Infinity)
is equivalent to V = V., i.e., every set x is in V,, for some ordinal a. ]

Thus, the universe under Foundation (or Induction, in the absence of Infinity) looks like:

Each level V, is a set; while the union is the entirety of V. Note that this is a much more precise
version of the picture (2.12): the “boundary” of the universe is the upper fringe; a class A C V
is proper iff it keeps going up, i.e., is not contained in any V,. For a set A, the least « such that
A CV,,ie., A€ Vi, is its rank p(A). The ordinals ON form a linearly ordered “spine” that
contains exactly one representative of each rank o (namely o).

Corollary 3.198. Assume Foundation (or Induction, in the absence of Infinity). Then any other class
A CV can also be written as a transfinite increasing union of sets, namely A = |J,con(ANVa). O

An important application is a way of building “quotients” by proper class-sized equivalence
relations. Given an equivalence relation ~ C X2, the point of the quotient set construction is
to represent each x € X by some “invariant” such that ~ between x’s becomes equality between
invariants. The usual equivalence class [z] takes all elements equivalent to z; if ~ (hence X) is
a proper class, then [z] may also be, hence need not exist in the universe even though z does.
But we may instead take a subset of [z] as the “invariant”. For example, this gives one possible
representation of “cardinal numbers” within the universe; see Definition 4.3.

Corollary 3.199 (Scott’s trick). Assume Foundation. Let X be a class, ~ C X2 be an equivalence
relation (also a class). Then there is a (class) function 7 : X — V such that 7(z) = n(y) < x ~y.

Proof. Let a(z) := min{a € ON | [z]NV,, # @}, which is always defined since x € V, for some « by
Foundation, and 7(x) := [z] N V(y). If © ~ y, then [z] = [y], whence a(z) = a(y) and 7(z) = 7(y).
Conversely, if 7(z) = 7(y), then there is some z € [x] N V() = 7(z) by definition of a(x), whence
also z € m(y) C [y], whence x ~ z ~y = x ~y. O

Exercise 3.200. Show (assuming ZF) that V[, consists precisely of the hereditarily finite sets,
i.e., which are finite, all of whose elements are finite, etc. (First formalize what this “etc.” means.)

Exercise 3.201. Show (assuming ZF) that if A is a J-open set, then p(A) is either 0 or a limit
ordinal. (I don’t know of any particular conceptual significance of such sets, unfortunately.)
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3.K. The axiom of choice. Given a well-ordered set, we may prove statements and construct
things for each element one by one. (Whereas for a general well-founded relation, we sort of have to
handle incomparable elements simultaneously, since they are not allowed to depend on each other.)
It is thus of interest to know: which sets can be well-ordered?

Proposition 3.202. For a set X, the following are equivalent:

(i) There exists a well-order < on X (we say X is well-orderable).

(ii) There exists a bijection between X and an ordinal.

(iii) There exists an injection from X into a well-ordered set.

(iv) There exists a surjection from a well-ordered set onto X.

(v) There exists a choice function ¢ € [[4cp(x) (o} 4, i-e., ¢ : P(X) \ {@} — X such that
c(A) € A for each o # A C X.

(vi) For any set I and family of nonempty subsets (4;);c; € (P(X)\ {@})!, [1;c; Ai # 2.

(vii) For any set I and relation R C I x X with dom(R) = I, there is a function R D f: 1 — X.

Proof. (i) = (ii): The rank function p. : X = p[X] is a bijection.
(ii) = (iv) is obvious.
(iv) = (iii): Let (Y, <) be well-ordered, f : Y — X; then g : X — Y where g(x) := min f~!(x).
(i) = (i): Let (Y, <) be well-ordered, f: X — Y; then x < 2/ :<= f(x) < f(a') well-orders X.
(v) = (vi): (c(Ai))ier € [Ties Ar
(vi) <= (vii) follows from the canonical bijection P(I x X) = P(X)! (Exercise 2.82).
(vii) = (v): Take R := > C (P(X)\ {@}) x X.
(i) = ( ): ¢(A) :=min A.
(v) = (ii): Define 4, C X, which is either empty or a singleton, for each o € ON inductively:

s {@ if Upeq Ag = X
{e(X\ Upca A)}  else.

Note that if A, = @, then clearly Ag = @ for all 8 > a. Also, if Ay, Ag # @ and a # 3, WLOG
with f < «, then (the unique elements of) A,, Ag differ by definition of A,. We thus have an
injection from an initial segment of ON, namely all those « such that A, # @, mapping such « to
the unique element of A, C X. Since X is a set, the initial segment of those a’s must also form a
set, hence an ordinal v C ON, such that A, = @ since v € 7; thus o — unique element of A, is a
bijection v = X. O

Axiom 3.203 (Choice (AC)). Every set is well-orderable, i.e., the equivalent conditions above hold.
(Conditions (i) to (iv) are known as the well-ordering theorem )

Definition 3.204. Zermelo—Fraenkel set theory with Choice ZFC consists of the axioms of ZF
(Definition 3.154) together with the Axiom of Choice. (See the diagram (2.27).)

The Axiom of Choice is unique among the axioms of ZFC in asserting the existence of a mathe-
matical object, namely a choice function or a well-order, which obeys certain properties that by
no means uniquely characterize it. By contrast, most of the other axioms (2.27) are special cases
of unrestricted Comprehension, which assert the existence of a set which is necessarily unique by
Extensionality (while Foundation asserts that certain kinds of sets don’t exist). For this reason,
Choice is often regarded as a “non-constructive” axiom; see Theorem 3.221.

Nonetheless, the Axiom of Choice is extremely useful, to the point that one often uses it without
thinking, and doing math without it can feel quite bizarre, as the following basic applications
illustrate:

Definition 3.205. A set X is finite if there exists a bijection between X and a natural.
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Proposition 3.206. If a set X is infinite (i.e., not finite), then there is an injection f : N — X.
Proof. Choose inductively f(n) € X \ f[n]; this is always possible, or else we would have f :n = X.
More precisely, we first fix a choice function ¢ € [] ACP(X)\{2} A, and then define A, C

X\ Upen Am which is either empty or a singleton {f(n)} inductively for each n € N as in
Proposition 3.202. Having done so, we may show that A, # & for all n, or else for the least n such
that A,, = &, we would have a bijection f :n = X taking each m < n to the unique element of A,,.

Or more concisely, we’ve already done the work in Proposition 3.202 of showing that there exists
a bijection f: a = X from an ordinal; now by assumption, « is not a natural, hence w < «, and so
the restriction of f to w is the desired injection. O

Exercise 3.207. Show that if A C R has no upper bound (i.e., no b € R such that a < b for all
a € A), then there is a sequence N — A converging to oo. Be explicit about uses of Choice.

The preceding two applications of Choice both follow from the following weakening:
Exercise 3.208 (Countable Dependent Choice (DC)). Show (over ZF) that the following statements
are equivalent:

(i) For every set X # @ and relation R C X? with dom(R) = X, there exists a sequence
f N —= X such that f(n) R f(n+1) for all n € N.

(ii) For every sequences of sets (X, )nen with Xo # @ and relations (R, C X,, X Xp41)nen with
dom(R,) = X,, there exists a sequence f € [,y Xn such that f(n) R, f(n + 1) for all n.

Show that these statements are implied by the full Axiom of Choice, and explain how the above
two results follow from ZF 4+ DC.
Exercise 3.209. Show using DC that for a function f : R — R, the following are equivalent:

(i) For every convergent sequence (z)neny € RY, limy, 500 f(2n) = flimy, o0 25).
(ii) For every € > 0 and x € R, there exists § > 0 such that for every y € R with |z — y| < §, we

have |f(z) — f(y)| <e.

Exercise 3.210. Let V' be a vector space (over R, say). Show that V' is finite-dimensional iff there
is no strictly increasing sequence of vector subspaces Wy C W1 C --- C V.

Many other familiar “basic” results in analysis and algebra also fail in the absence of at least DC.

Example 3.211. The following common situation does not require Choice, despite appearances.
Given a function f : X — Y and an equivalence relation ~ C X2, if V1 ~ z2 (f(21) = f(x2)), then

f descends to a function on the quotient set f : X/~ — Y, defined by f([z]) := f(x).
It may appear that we are “choosing an arbitrary representative x from the equivalence class”;
however, because the choice doesn’t matter, we can simply define f via comprehension:

f={(Cy) € X/~ xY|3weC(f(x) =y)}
={(Cy) € X/~ xY [Ve e C(f(x) =y)}

Exercise 3.212. Show that full Choice is equivalent to: every surjection f : X — Y has a section
(right inverse) g : Y — X.

Exercise 3.213. Show that the following statement is equivalent to full Choice. For any set X, set
I, sets (J;)ier, and sets (A;j € X)ier,jeJ;s

U 4= U N4

el jed; (ji)iGIGHiEI J; el
(It suffices to consider X = 1.] Similarly, for a set I, sets (J;)icr, and reals (z;; € [0,1])icr jeJ;

inf sup z; ; = sup inf x; j,.

i€l je; (i)ier€llier Ji €1
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Returning to our original motivating intro to this subsection: a large class of applications of
Choice, or rather the well-ordering theorem, consists of inductively constructing objects satisfying
various constraints. Roughly speaking, the general format of such constructions is: if all the
constraints are finitary in nature, and finitely consistent with each other, then they can always be
satisfied.

Theorem 3.214. Let X be a set, R C X2 be a directed graph (i.e., binary relation). Then there is
a maximal R-clique A C X, ie., A> C R.

Proof. Fix a well-order < C X?2. Define <-inductively
A={zeX|zRx & VA>y<z(x Ry Rux)}.
(That is, define inductively the indicator function f: X — 2 of A by
flz)=1 <= sz Rz & Vy<z(flyy=1 = zRyRx),

and then put A := f~1(1).) Then A% C R by construction. To show maximality: if + € X \ A, then
either z R x in which case AU {x} is not a clique, or there is A 3 y < z such that x Ry or y R x in
which case again AU {x} is not a clique; thus = cannot be added to A while keeping it a clique. [

Corollary 3.215 (Hausdorff maximality principle). Every poset (X, <) has a maximal linearly
ordered subset. O

Corollary 3.216 (Zorn’s lemma). Let (X, <) be a poset such that every linearly ordered subset
has an upper bound. Then X has a maximal element.

Proof. Let C C X be maximal linearly ordered, u be an upper bound of it. Then w is maximal,
since if v > u, then v is also an upper bound of C', whence v € C by maximality, whence v <. O

Exercise 3.217. Show (over ZF) that Zorn’s lemma implies Choice. Thus the preceding three
results are all equivalent to Choice.

)

Zorn’s lemma is frequently used in “ordinary” math outside of logic, often in proofs that have the
flavor of transfinite/well-ordered induction (but do not require knowing what these words mean).
The following generalization of Theorem 3.214 is a typical example; we give two proofs.

Theorem 3.218. Let X be a set, R, C X" for each n € N be a family of finitary relations (a
“directed hypergraph”). Then there is a maximal A C X such that A™ C R,, for each n.

Proof 1. Consider the poset of all such A, ordered by inclusion. If ¢ C P(X) is a linearly
ordered set of such A, then |JC is also such an A, i.e., ((JC)" C R, for each n, since for any
T = (z0,...,xn-1) € (JCO)", each z; € A; for some A; € C, whence the largest A; contains all of
Z0,-..,Tn—1, Whence ¥ € AT C R,,. Now apply Zorn’s lemma. O

Proof 2. Fix a well-order < C X2. As in Theorem 3.214, define inductively
A={zeX|VneNVyy,...,yp1 <z(VMi<n(yy<z = y; € A) = y€R,)}.

Then A™ C R, for each n: to show ¢ € A™ is in R,,, apply the definition of A to x = max;<, y;. To
show maximality: if x &€ A, then there are n € N and yg,...,yn—1 < x such that each y; < x isin A
but §¥ & Ry; then 5 € (AU {z})", so we cannot add x to A while maintaining A" C R,,. O

Corollary 3.219. Every vector space V over every field K has a basis, i.e., a maximal linearly
independent set B C V>4

Proof. B is linearly independent iff for each n € N, B™ is contained in the set of n-tuples of vectors
with no nontrivial zero linear combination. O

247 theorem of Andreas Blass shows that this is equivalent over ZF to Choice!
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Corollary 3.220. There exists a function f : R — R such that

fle+y) =Ff@)+fly) Ve,yeR,
yet f is not given by f(z) = cx for any constant ¢ € R.

Proof. Pick a (Q-basis B C R and define the QQ-linear transformation f by scaling basis elements by
different amounts. O

Can you think of such a function? The following theorem is well beyond the scope of this course:

Theorem 3.221. It is not possible to explicitly define any such function f : R — R. More precisely:

(a) Tt is not possible® to prove from ZF + DC that any such function exists.

(b) It is possible to explicitly define such a function f : R¥ — R on a Q-linear subspace R* C R.
Thus by (a), it is not possible to prove in ZF + DC that R” = R. Moreover, it is also not
possible to prove, even in ZFC, that RY # R.

In other words, not only can you not define such an f, but you cannot even prove that you cannot
define such an f! (Exercise: do the two uses of “define” here mean the same thing?)

The above is one among many results illustrating the “non-constructive” nature of Choice:

Theorem 3.222 (prime ideal theorem). Let (R, +,0,-,1) be a commutative rig, i.e., a set
equipped with two commutative, associative, and unital operations, such that - distributes over +.
Let FF C R be a multiplicative submonoid, i.e., closed under -,1, and I C R be an ideal, i.e.,
closed under +, 0, and r - (—) for each » € R. Suppose FFNI = @&. Then there is an ideal ] C J C R
which is prime, meaning R\ J is a multiplicative submonoid, such that F'NJ = &.

Proof. Consider the poset of all ideals I C J C R such that F'NJ = @. For a linearly ordered set
C of such J, TU|JC is still such an ideal: it clearly contains I and is disjoint from F; and it is
still an ideal, because {I} U C' is linearly ordered and the definition of “ideal” involves being closed
under some finitary conditions. Thus, by Zorn’s lemma there is a maximal such J. It remains to
show that R\ J is a multiplicative submonoid. We have 1 € R\ J, since 1 € F and FNJ = &.
Now let a,b € R\ J. It is easily verified that

J4+Ra:={c+ra|lceJ & re R}

is an ideal, which contains J (take r = 0) and a (take ¢ = 0 and r = 1), hence by maximality of J,
c+ ra € F for some ¢ € J, r € R. Similarly, d + sb € F for some d € J, s € R. Then

F 3> (c+ra)(d+ sb)
=cd + csb+ rad + rasb

where the first three terms are (multiples of ¢ or d, hence) in J, whence ab € R\ J or else the last
term is also in J, contradicting F'NJ = @. 0

Corollary 3.223. There exists a function u : P(N) — 2 preserving all finite Boolean operations
and mapping every finite set to 0.

Such a function is called a nonprincipal ultrafilter on N. Note that without the last restriction
on finite sets, there are “trivial” such u: namely, for any n € N, we may map A C N to 1 iff n € A.
Thus, a nonprincipal ultrafilter can be thought of as a “generalized element” of N.

Proof. Regard P(N) as a rig with + = U and - = N. Then v~ *(0) for the desired u will be a prime
ideal in P(N); and conversely, it is easily verified that the indicator function of the complement of
every prime ideal preserves finite Boolean operations. Now apply the prime ideal theorem to the
ideal I C P(N) of finite sets, which is disjoint from the multiplicative submonoid F' = {N}. O

25assuming that ZF is consistent to begin with; otherwise everything is provable
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Remark 3.224. Once again, it is not possible to explicitly define such u, nor to prove that this is
impossible. Indeed, there is a common generalization underlying both this result and Theorem 3.221.
Between any “reasonable” groups, such as R with addition, P(N) with symmetric difference, or 2
with XOR, any “definable” group homomorphism must be continuous!

For the next few applications, we introduce some terminology. Let X be a set and A C P(X)
a family of subsets. We say A has the finite intersection property if every finite 7 C A has
nonempty intersection. We call A compact if every B C A with the finite intersection property
must itself have nonempty intersection. Intuitively, we think of each A € A as a “constraint”;
compactness means that every family of “finitely consistent” constraints can be satisfied.

Corollary 3.225 (Alexander subbasis lemma). Let X be a set, A C P(X) be a set of subsets. If A
is compact, then so is the set C of finite unions of sets in .A.2

Proof. Let D C C have the finite intersection property. Then the closure D’ of D under finite
intersections is disjoint from the ideal {@} C P(X), hence there is a prime ideal J C P(X) disjoint
from D', hence from D. Each set D € D C C, being a finite union of sets in .4, must contain at least
one set in A\ J, or else D would be in J since J is an ideal. Thus (D 2 (A \ J) # &, since
A\ J C A has the finite intersection property, since J is a prime ideal. ]

Theorem 3.226 (Tychonoff for 2). Let I be a set, C C P(2) be the set of clopen sets, i.e., those
C C 2! such that membership in C' depends only on finitely many coordinates. Then C is compact.?”

Proof. To say that membership in C' depends only on the finitely many coordinates I’ C I means
that for some ¢’ C 2!, we have A=

C = {.’13 S 21 | .’E|I/ S Cl} = U$/€C/ {.T € 2] | ﬂf, g .’13}
Thus letting A := {A,/ | I’ C I finite & 2’ € 2"}, C consists of finite unions of sets in .A. Thus, it
suffices to show A is compact. Let B C A have the finite intersection property. For each A, € B, 2’

is a partial function I — 2 with finite domain; and for two such A,s, A,» € B, the finite intersection
property ensures that A, N A,» # @, whence 2/, 2" agree on the intersection of their domains. Thus

z:=J{a’ € 2! | I C I finite & A, € B}

is a partial function I — 2; extending it arbitrarily to the rest of I yields an element of (5. [

This result is known to be weaker than full Choice. Intuitively, it provides a way to build objects
satisfying finitary constraints and consisting only of finitary data (bits in 2). For example:

Corollary 3.227. There exists a function f : 2N — 2 preserving bitwise XOR and mapping every
infinite bit string with exactly one 1 to 1.

In other words, this is a linear transformation over the field Fy with 2 elements, hence follows
easily from Corollary 3.219. But we can also deduce it as follows:

Proof. For f € 22" to obey the specified conditions means (i) f(u®v) = f(u)® f(v) for all u,v € 2V,
and (ii) f(d;) = 1 for all ¢ € N where 0;(j) =1 :<= i =j. The set of f obeying (i) for fixed u, v is
a clopen set depending on coordinates u,v,u @ v € 2~ while the set of f obeying (ii) for fixed i is a
clopen set depending on coordinate §; € 2Y; thus by Tychonoff, it suffices to show any finitely many
of these conditions can be satisfied. Consider the finite-dimensional Fo-subspace V' C 2N spanned by
the u, v, d; mentioned in these conditions; define linear f : V' — 2 to map the linearly independent
vectors 9; to 1, and extend by linearity to all of V' using finite-dimensional linear algebra; and then
extend f to an arbitrary function on all of 2V (possibly nonlinear). O

261y other words, a topological space is compact if every subbasic open cover has a finite subcover.
27 Also known as the compactness theorem for propositional logic.
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Exercise 3.228. Use Tychonoff’s theorem for 2 to show that Theorem 3.222 holds for every
powerset (this is known as the Boolean prime ideal theorem). Thus, the following are equivalent
over ZF, and all weaker than full Choice:

e the Boolean prime ideal theorem;
e the Alexander subbasis lemma;
e Tychonoff’s theorem for 2.

In fact, Tychonoff’s theorem for arbitrary products of finite sets is also equivalent. (This even works
for products of compact Hausdorff spaces; but the proof there is more involved.)

Exercise 3.229 (for topologists).

(a) Using the Alexander subbasis lemma, prove the full Tychonoff’s theorem: every product of
compact topological spaces is compact.

(b) Prove that Tychonoff’s theorem implies Choice. [To choose elements from sets X;, consider
topological spaces of the form X; L {T}, where T is an additional element, with topologies
consisting of at most 3 open sets.]

(Thus, (a) must in fact also use full Choice, aside from the Alexander subbasis lemma.)
Our final group of applications of Choice are of a more geometrical nature:

Theorem 3.230 (Vitali). Let S' = {(z,y) € R? | 22 +y? = 1} be the unit circle. There is a way to
partition S = Ayl A; U --- into countably many subsets, slide those subsets around in the plane
(i.e., using translations and rotations), and rearrange them into two disjoint unit circles.

Proof. Consider the equivalence relation ~ on S' defined by @ ~ @ :<= the angle between them
is rational (in degrees, i.e., a rational multiple of 27). Let C' C S! choose exactly one element from
each equivalence class. For each r € Q/Z, let C, be the rotation of C' by 27r; then

s'= || &

reQ/Z

is the desired countable partition. To see this works: note that any two C;, C's may be rotated onto
each other. Thus for any infinite R C Q/Z, finding a bijection f: R~ QN [0,1), we may move the
pieces C,. for r € R to another complete copy of S, by rotating each C, to C 7(r)- Finally, find a
partition Q/Z = R LIS into two infinite sets; move C,. for » € R into one copy of S'; and move Cj
for s € S into another copy. O

Exercise 3.231. In fact, S' may be rearranged into countably many copies of S?.

Remark 3.232. Theorem 3.230 is the main ingredient in a basic result in measure theory: that it
is not possible to define a meaningful notion of “length” for every subset of R or S'. If this were
possible, then the pieces in the above partition used to make the first copy of S! would have total
length 27, as would the pieces in the second copy; but their total length would also be 27.

More precisely, there cannot be a notion of “length” p : P(S') — R obeying some intuitively
reasonable axioms that were used in the above argument. Namely, y should always be nonnegative;
u(SY) = 27; p should be preserved under rotations; and u should add over countable partitions.
This last requirement may seem a little fishy; after all, we cannot require p to add over arbitrary
partitions, since S' is an uncountable union of singletons. What if we allow only finite partitions?

Theorem 3.233 (Banach). There exists a function p : P(S!) — [0, 27] such that p(S!') = 27, p is
preserved under rotations, and u(A U B) = u(A) + u(B) for all disjoint A, B C S'. (Such a p is
called an invariant finitely additive measure.) Thus, it is not possible to break S! into finitely
many pieces and rearrange them to form two copies of S*.
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Proof. First, we show that for any finite set of angles F' C R and € > 0, we can find a p which is
preserved under rotations by only these angles and only up to an error of . That is, if A C S,
r € F, and A" = A rotated by 27r, then |u(A) — u(A")] < e. We will define p by

() = 27 |{(ar)rer € N*' | (cos(2m vae'garr),sin(%r e arr)) € A}

for 2r/e < N € N. In other words, instead of the actual length of A, we only sample along points
at angles 27 ) " a,r where the coefficients run up to N, and take the proportion of these points
which are in A. If we rotate A by r, each point in A with a, < N — 1 will correspond to a point in
the rotated A’ with a, increased by 1. Thus the membership status of at most NV IFI=1 points (those
with a, = N — 1, and arbitrary values a; € N for s # r) can change, and so

B , 2N IFI=1 _ 2r
[u(A) = p(A)] < TNE N <e.

It is easily seen that also u(S') = 27 and u adds over disjoint unions.

Now for each finite F C R and € > 0, the set of all functions p : P(S*) — [0,27] obeying
the above conditions is a closed set Mg, C [0, 277]7)(51). We have Mpe N Mpr o 2 Mpyps min(ee');
thus the family of all Mg, obeys the finite intersection property. Their intersection is the set of

invariant finitely additive _measures. By Heine—Borel (Theorem 3.31) and Tychonoff’s theorem
(Exercise 3.229), [0,27]P(") is compact, thus an invariant finitely additive measure exists. O

It turns out that this result is specific to low dimensions:

Theorem 3.234 (Banach-Tarski). Let S? = {(x,9,2) € R3 | 22 + 4% + 22 = 1} be the unit
sphere. There is a way to partition S? into finitely many subsets, slide those subsets around using
translations and (3D) rotations, and rearrange them into two disjoint unit spheres.

What is the precise connection between this result and Theorems 3.230 and 3.2337 All three
results are really about transformation groups: the group of all rotations of S' in the case of the
former theorems, which is isomorphic to R/Z under +; and the group SO(3) of rotations of 52, i.e.,
3 x 3 orthogonal matrices, in the case of the Banach—Tarski Theorem 3.234.

In Theorem 3.230, we took a countable subgroup of R/Z, namely the rational ones Q/Z. This
group acts freely on S': for any @ € S', (r +— rotation of @ by 277) is a bijection between Q/Z and
the orbit of ¥. Thus, after choosing a set C' of representatives from each orbit, we get a bijection

C xQ/7=8"
(¥, r) — rotation of ¥ by 27r

such that rotation in S! corresponds to + in the second coordinate Q/Z. Now the proof of
Theorem 3.230 amounts to the trivial fact that Q/Z, being countable, may be partitioned into

Q/z= || {r}
reQ/Z

such that these pieces may then be moved around in Q/Z into two copies of Q/Z (namely those in
the sets R and S). By doing this rearrangement in the second coordinate of C' x Q/Z, the above
bijection then yields the desired decomposition of S*.

Theorem 3.233 thus implies that it is impossible to rearrange Q/Z into two copies of itself via
a finite partition. In fact, the proof of Theorem 3.233 shows this directly; simply replace R and
“rotation” in that proof by Q/Z and “addition”. What that proof really shows is the following:

Theorem 3.235 (Banach). For any abelian group (G, +,0, —), there exists an invariant finitely
additive probability measure u: P(G) — [0, 1] such that u(G) =1, u(AU B) = u(A) + u(B),
and u(A+g) = p(A) for any A, B C G and g € G.
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The Banach—Tarski Theorem 3.234 thus depends crucially on the fact that SO(3) is highly
nonabelian; in fact, in some sense, it is as complicated a group as possible:

Definition 3.236. The free group on two generators Fy = (a,b) consists of all finite strings
(including empty) of the four symbols a,b,a~!, b, such that no letter occurs consecutively with its
inverse. Two such strings are multiplied by concatenation followed by cancelling inverses: e.g.,

(aba~'bb)r~Tab) = aba~'bab.
In other words, Fy is obtained by “declaring there to be two elements a, b, and taking all elements

built from those, with no relations between them except those implied by the group axioms”.

Theorem 3.237 (Hausdorff). There are two orthogonal matrices A, B € SO(3) obeying no relations
not implied by the group axioms, i.e., such that we have an injective group homomorphism
a™p" g — AMOBMAM2 ..
This is the key technical ingredient underlying the Banach—Tarski paradox, and its proof involves
numerical computations with matrices: for example, one could take the rotations about the z- and
y-axes, both by the angle arcsin(%) in a 3-4-5 right triangle, yielding matrices with rational entries.

Theorem 3.238. There is a finite partition Fo = P U Q U R IS such that Fo = PlLla@ = RUDS.
Proof.

S={b"1-JU{t"|neN} 0

Proof sketch of Banach—Tarski Theorem 3.234. We identify Fy with a subgroup of SO(3) via Theo-
rem 3.237. Each nonidentity rotation I3 # T € SO(3) fixes only two points on S$2. Thus, there are
countably many points F' C S2 such that every nonidentity 7" € Fo moves every point in S3 \ F; we
will prove the weaker statement that S\ F' can be countably partitioned and then rearranged into
two copies of itself. Let C' C S3\ F choose exactly one point from each Fa-orbit. Then

S3\F=PCUQCURCLUSC

is the desired partition; indeed, PC, QC can be rearranged into one copy S°\ F = PC UaQC, while

RC, SC can be rearranged into another copy S*\ F' = RC LU bSC. O
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4. CARDINALITY
4.A. Equinumerosity and cardinality.
Definition 4.1. Two sets A, B are equinumerous or have the same cardinality, denoted
A= B,
if there exists a bijection f: A = B.

Remark 4.2. This is a (proper class) equivalence relation on V', since bijections are closed under
composition, inversion, and identity.

The concept of equinumerosity is more fundamental than that of “the cardinality” |A| of a set.
We would like to define the latter to mean any object we can assign to A, in such a way that
equinumerosity indeed means “having the same cardinality”. For an equivalence relation on a set,
we would just take the quotient; but equinumerosity is on the proper class V.

Definition 4.3 (assuming Foundation). The cardinality |A| of a set A is defined using Scott’s
trick (3.199), i.e., as the set of all sets equinumerous with A with minimal rank among all such sets.
Thus, a cardinal « is a maximal nonempty set of equinumerous sets of equal rank.

~

Definition 4.4 (assuming Choice). Then in each =-equivalence class, there is at least one ordinal;
and among those, we may canonically choose the least one. The cardinality |A| of a set A is the
least ordinal equinumerous with A.

Thus, a cardinal « is an initial ordinal: one not equinumerous with any strictly smaller ordinal.

As with other coding choices (Sections 2.D and 2.E), in ZFC (so both Foundation and Choice),
the choice of which of these we call “cardinals” is largely irrelevant for ordinary mathematical
practice. All we need to know is that

(4.5)  For each set A, we have an object |A| called its cardinality.
(4.6) Two sets have the same cardinality iff they are equinumerous.

Nonetheless, in the presence of Choice, the initial ordinals representation is somehow much more
canonical and convenient, in the same way that the standard encoding of naturals is well-justified
via the Mostowski collapse (see Example 3.138). Indeed, even in the absence of Choice, it makes
sense to isolate the well-orderable cardinals (i.e., cardinalities of well-orderable sets) as special
ones, and then to represent these via initial ordinals (while using some other representation such as
Scott’s trick for other cardinals).

4.B. Cardinal comparison.
Definition 4.7. A set A injects into another set B, denoted
A— B,
if there exists an injection f : A < B.
Remark 4.8. This is a preorder on V', since injections are closed under composition and identity.
Remark 4.9. A2 B — A — B < A, since bijections are injections.
It follows from both of these properties that A’ =2 A — B~ B’ — A’ — B’, justifying

Definition 4.10. For two cardinals |A|, |B|,

|A| < |B| <= A< B.

This is a preorder on the class of all cardinals (however we choose to encode them).
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Theorem 4.11 (Schroder—Bernstein). For any two sets A, B, if A < B < A, then A~ B.
Thus < on cardinals is a partial order.

Proof. Let f: A< B and ¢g: B < A; our goal is to construct a bijection h : A = B which is equal
to f on some elements and ¢! on others (or possibly both). Let C' C A be the elements on which
it’s given by f. Then part of h will be given by the bijection f : C'% f[C] C B. The rest must be
given by the inverse of g : B\ f[C] = g[B\ f[C]] C A; thus we must find C' C A such that

C = A\g[B\ fC]].

g
Al <] 5
f
Since C' — A\ g[B \ f[C]] is monotone, by Knaster—Tarski such a fixed point C' exists. O

Remark 4.12. For a more informative proof, we may use the transfinite version of Knaster—Tarski
3.176. Note also that since g is injective, we may write the above operator more intelligibly as

A\ g[B\ f[C]] = A\ (g9[B]\ g[f[C]])
= (A\ g[B]) U g[f[C],

which is clearly finitary (indeed unary); thus by Proposition 3.180, the least fixed point C' C A is
the union of the first w iterates (again using that g o f is injective)

@ C A\ ¢[B]
C (A\ g[B]) U (glf[A]]\ glflglBI]])
C (A\g[B]) U (glf[AN\ glf[g[BID) U (gl flglfTANN\ glf (gl £ Tg[BIIN])
C...

This union consists of the red rings on the left below; the resulting bijection h simply switches each
with the green ring inside it, while applying ¢~! on the remaining “center”.

A\ g[B] B\ fl4]
glBI\g[f[A]] [AN\flg[B]]
f
gl AT\ gL LalB]]] FlalBINFlglf [A)]

A AN 5
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Exercise 4.13. Verify that if we instead take the greatest fixed point C of C'+— A\ g[B\ f[C]], the
bijection h is defined the same way as above except being given by f instead of g~ on the “center”.

Remark 4.14. Are the cardinals linearly ordered? This is equivalent to Choice; see Corollary 4.24.
4.C. Well-orderable cardinals.

Proposition 4.15. For an ordinal o and initial ordinal s, we have kK C a <= Kk — «a.

In other words, an initial ordinal is (not only not equinumerous with but) does not inject into
any smaller ordinal.

In particular, ordinal and cardinal comparison agree on initial ordinals.

Proof. Clearly, K C a« = k < a. Conversely, if k Z «a, then since ordinals are linearly ordered,
a C k; since & is initial, this means o 2 k, whence k 4 « by Schroder—Bernstein. O

Theorem 4.16 (pigeonhole principle). For m,n € N, we have m <n <= m — n.
In other words, naturals are initial ordinals.

Proof. By induction on n. If n = 0, then clearly m — n = & implies m = &. Now suppose every
m—nis <n,and let f:m — n+ 1. If m =0, then clearly m < n. Now suppose m > 0, whence
m =m'+ 1 for some m’ € N. If f[m/] C n, then by the IH, m’ < n, whence m =m’+1 <n+ 1.
Otherwise, there is some k < m’ such that f(k) = n, whence since f is injective, f(m’) < n; modify
f by swapping f(k), f(m'), and apply the previous case. O

Proposition 4.17. If K is a set of initial ordinals, then sup K € ON is initial.

Proof. If sup K — a < sup K, then a < k for some k € K, and k < sup K — «, contradicting that
K is initial. 0
Corollary 4.18. w is an initial ordinal: w ¥ n for all n € w. O

Theorem 4.19 (Hartogs). For every set A, there is a (least) ordinal n(A), called the Hartogs
number of A, that does not inject into A.

Note that n(A) is then clearly initial.

Proof. If a € ON injects into A, then « is the rank of a well-order on a subset of A (namely the
image of the injection). Thus n(A) = mex{p<[B] | BC A & < is a well-order on B}. O

Corollary 4.20. For every initial ordinal x, there is a least initial ordinal > &, called the successor
cardinal T = (k).
Note that this is not to be confused with the successor ordinal (Proposition 3.149). For naturals

they agree, but otherwise x™ is much bigger:
Example 4.21. The successor cardinal w™ is the smallest uncountable ordinal, usually denoted wj.
Definition 4.22. N, = w, is the ath infinite initial ordinal. Thus

N[) =Wy = w,

Nl = W] = UJ+,

N? = w2 = w++7

N, = sup,,., N, by Proposition 4.17;
more generally,
Noy1 = RE,
Ny = supge, N for limit ordinals «, by Proposition 4.17.
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Remark 4.23. By Proposition 3.202(iii), every cardinal < an initial ordinal is itself well-orderable.
Corollary 4.24 (over ZF). The Axiom of Choice is equivalent to: cardinals are linearly ordered.

Proof. If Choice holds, then every cardinal is an initial ordinal, which are well-ordered.
Conversely, if a set A is comparable in cardinality with n(A), then since n(A) 4 A, A — n(A),
whence A is well-orderable. O

Exercise 4.25. By essentially Proposition 3.202(iv), for a nonempty set A and well-ordered set B,
we have A — B iff B —» A.

For example, this says that a nonempty set is countable (A < N) iff it has an enumeration.
Proposition 4.26. Every cardinal is comparable with every natural n € N.

Proof. By induction on n. Clearly 0 < A for every set A. Now suppose n is comparable with |A[. If
A < n, then clearly A < n + 1. Otherwise, let f : n < A. If f is surjective, then f=1: A < n+1.
Otherwise, there exists a € A\ im(f); extend f ton+ 1 by f(n) :==a toget n+1 < A. O

We thus get the following picture of cardinals in the absence of Choice:

(4.27)

well-orderable cardinals

finite cardinals

The well-orderable cardinals, i.e., initial ordinals, form a well-ordered (because ON is well-ordered),
downward-closed (by Remark 4.23) “spine” without an upper bound (by Hartogs). Among them,
the finite cardinals n € w form an “initial segment” that’s actually below everything else (by
Proposition 4.26). Above them, there could be infinite cardinals that are not > R, i.e., cardinalities
of infinite sets without an infinite sequence, since Dependent Choice is required to construct such
an infinite sequence (Proposition 3.206); such sets are called infinite Dedekind-finite, and have
Hartogs number Rg. Similarly, even if DC holds, there could be uncountable cardinalities (not < Ry,
which means > Ny assuming DC) that are incomparable with Rj.

Remark 4.28. In particular, 2%, the cardinality of R (see Example 4.36), is usually considered to
be “definably” incomparable with Ni; for the precise meaning of this, take a course in descriptive set
theory. Indeed, there is even a theorem saying that under some reasonable “definability” hypotheses,
R; and 280 are the only two minimal uncountable cardinalities!
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4.D. Cardinal arithmetic. In general, given any (say binary) operation * on sets which is functorial
in the sense of Definition 2.68, functoriality implies that * respects the equivalence relation = on V,
hence descends to an operation on the quotient class of cardinals defined via

|A| % |B| :=|A * B].

Definition 4.29. The sum of cardinals is induced by disjoint union (Definition 2.76):

|Al+ |B| :=|AUB| = [{(i,z) €2x (AUB) | (i=0 & z € A) or (i=1 & z € B)}|.

Definition 4.30. The product of cardinals is induced by Cartesian product (Definition 2.32):
|A| - |B| :==]A x B|.

Definition 4.31. Exponentiation of cardinals is induced by function sets (Definition 2.48):

|B|IAl:= | B4|.

(Functoriality is by Example 2.71.)

Remark 4.32. For cardinals represented as initial ordinals x, A, these notions must not be confused

with the ordinal arithmetic operations from Section 3.H with the same name!

For + and -, we at least have that the ordinal operation yields a (typically non-initial) ordinal
whose cardinality is the cardinal operation:

lordinal k + \| = cardinal k + A,
lordinal k- A\| = cardinal & - \.
These follow from the rank-based definitions of ordinal +, - from Exercise 3.169. It follows that
ordinal kK + A > cardinal k + A,

ordinal - A > cardinal & - \.

For exponentiation however, the ordinal power from Exercise 3.172 will usually be much smaller
than the cardinal power! For example, the ordinal power 2 = sup{1,2,4,8, ...} = w is countable,
whereas the cardinal power 2¢ is not, by Cantor’s Theorem 2.9 (see also 4.35).

(Note that the cardinal operations do agree with ordinal ones on naturals, since these are all
initial by Theorem 4.16.)

Just as any functorial set operation descends to an operation on cardinals, so does every natural
bijection between two such operations (see Section 2.E) yield an algebraic identity:

Proposition 4.33. The following all refer to cardinal operations:
(a) 4 and - are commutative and associative, with respective identity elements 0, 1.
(b) - distributes over 4+ and -0 = 0. In particular, K -n =k +---+ K for n € N.
n
(c) kM = g* - k# and Kk° = 1. In particular, k" = k--- & for n € N.
) (K- A)F =rkrF- A and 1# = 1.
(e) (kMH* = kM and k! = k.
) [P(X)| =21,

Proof. By various canonical bijections. For example, (e) follows from Example 2.81. O
We also get various inequalities, derived from natural ¢njections:

Proposition 4.34. Again referring only to cardinal operations:
(a) 4+, are monotone (in both arguments).
(b) k<A = k<A, and Kk <X = p* < p unless p=r=0<A\
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Proof. Let f: A < B; then for any C,

AUC — BUC AxC—sBxC(C A€ — B¢
(0,a) — (0, f(a)) (a,c) — (f(a),c), g— fog,
(1,¢) — (1,0),

which shows |A| 4 |C| < |B|+|C|, |A| - |C| < |B| -|C|, and |A[I€! < |B|I€l. To show |C|IAl < |C|IBl:
o If |[B| =0, then |A| = 0 (since A — B), so this is clear.
e If |A| > 0, then f has a retraction (left inverse) g : B — A, mapping f(a) — a and every
other b € B\ f[A] to some arbitrary ag € A. Then

CA— CB
h—— hog.
e If |[A| = 0 < |C|, then C* is a singleton while CP is nonempty (take a constant).
e Finally, if |C| = |A| = 0 < |B|, the inequality is false: 0° =1 £ 0 = 0/Z1. O
Theorem 4.35 (Cantor). For any cardinal k, k < 2.
Proof. Letting k = |A|, we have A — P(A) by a — {a}, but A % P(A) by Theorem 2.9. O
Example 4.36. We have
R — P(Q) P(N) — R
r—{qeQ|qg<r}, Ar— 3 41077,
whence

R| < [P(Q)| = 2% = 2% = 2Nl — |P(N)| < |R|
and so by Schroder—Bernstein,
IR| = [P(N)| = 2% > X,
Example 4.37. We have
R0 < g < < N0 < (2N0)No — gRoRo — 9No
(the last step using that N? is countable, e.g., by the injections n + (n,0) and (m,n) — 27m3").
Thus by Schroder-Bernstein, these cardinals are all equal. For example, we get |RY| = |R).
We may also define indexed versions of cardinal operations:

Definition 4.38. For a set I and family of sets (4;);er, the indexed sum and product of
cardinals are defined via

ZieI‘Ai| = “—lz‘el Ai}’
[Lic/4il == ‘Hiel Ai}'

Exercise 4.39. Check that these are well-defined, i.e., depend only on the cardinalities of the A;,?®
assuming the Axiom of Choice (why?).

Remark 4.40. Again, for sum only, this is related to the indexed ordinal sum from Exercise 3.169:
lordinal }_ k4| = cardinal 3 5Ky <ordinal 3 gk,
Exercise 4.41. Prove indexed analogs of Proposition 4.33. [See Exercises 3.169 and 3.172.]
Exercise 4.42. Prove indexed analogs of Proposition 4.34, assuming the Axiom of Choice (why?).
We will say more about these indexed operations in Section 4.F below.
28See Exercise 2.79. Indeed, they are even invariant under replacing I with an equinumerous copy, provided we

also reindex the A;’s. More precisely, Y and [] are functorial on a category called [, Set Set’.
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4.FE. Well-ordered cardinal arithmetic. While the above laws of cardinal arithmetic had fairly
“structural” proofs, under Choice things become much more trivial:

Proposition 4.43. For every infinite well-orderable cardinal k, we have k + 1 = k.

Proof. We have Xg + 1 = Ny, i.e., there is a bijection

wlU{0} 2w
(0,n) —»n+1
(1,0) — 0.
Now since w < k, we get a bijection x U {0} = k which is the above together with the identity
function on x \ w. O

Corollary 4.44. Every infinite initial ordinal Kk = X, is a limit ordinal.

Proof. For a < k, either @ < w in which case a4+ 1 < w by definition of w, or « is infinite in which
case |+ 1| = |a] + 1 = |a] < a < k whence o + 1 < & since k is initial. O

Exercise 4.45. Show that in general (without Choice), for a cardinal s, the following are equivalent:

(i) k+1=xk.
(ii) & is Dedekind-infinite, i.e., Rg < K (see (4.27)).
(iii) For any set A with |A| = k, there is a non-surjective injection A — A.

Proposition 4.46. Let I be a well-orderable set, (4;);c; be a family of sets. Then
‘Uiel Ai‘ < DierlAil-
Proof. Map each a € | J;c; A; to (i,a) € | |;c; Ai for the smallest 7 such that a € A;. O

Theorem 4.47. For every infinite well-orderable cardinal x, we have 2 = k.2

Proof. By induction. Suppose for all infinite cardinals A < &, we have A2 = X\. Then
K2 = |k X K|

= |Uaer(a x a)] by Corollary 4.44

<Y acnlal? (cardinal sum, by Proposition 4.46)

<Y acklal? (ordinal sum, by Remark 4.32)

< SUpycp E,@<a’ﬁ|2 (ordinal sum and sup, by Corollary 4.44 and Exercise 3.169);
but for each a < k, we have |Zﬁ<a|ﬁ|2| < |a|® < k by the IH (for a > w) or definition of w (for
a < w), whence Zﬁ<a|5|2 < K since & is initial. O
Corollary 4.48. For two well-orderable cardinals k, A at least one of which is infinite, we have

K+ A = max(k, A),
k- A =max(k,\) if kK, A #0.
Proof. WLOG A is infinite and & < A; then
kUAN={(i,a) €2X A |i=0 = a€r} CTAXN\,

whence k+X < A2 = )\, and clearly also A < k+Xand k-A < A% if K > 0, thenalso A = 1-A < k-A. O

Corollary 4.49. For an infinite well-orderable cardinal k, we have k™ = k for every 1 <n € N. [

29More precisely, the proof yields an inductive way of defining an explicit injection x2 < & for each ; hence why
this statement for well-orderable x does not need Choice.
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The following is a weird application of well-orderability of R, similar in spirit to the “pathological”
constructions using Choice from Section 3.K, but additionally using a bit of cardinal arithmetic:

Theorem 4.50 (Mazurkiewicz). There exists a subset A C R? which contains exactly two points
on every line.°

Proof. Note that the set £ of lines in R? has cardinality 280 = |R|: for example, we have injections

R~ L L—R3
b+— {x =10}, I (1,m,b) if L is a nonvertical line y = mx + b,
(0,1,b) if L is a vertical line x = b.

Thus, let (La),<o% be a transfinite enumeration of £, here assuming that 2% is an initial ordinal.
Define a sequence (A, C R?),_4x,, where each |4,| < 2, inductively as follows:
e If L, already contains two points in U5<a Ag, then A, == @.
e Otherwise, note that |z, 4s| < 2 [af < 2% thus also \(UB<QA5)2] < 280 = |L,|.
For each pair of distinct points in UB <o Ap, the unique line through them is not L, by
assumption, hence intersects L, in at most one point. Pick one or two (depending on
whether [Lo Mg, Agl = 1 or 0) points on L, not on any such line and not in (s, 4,
and let A, be those points.
We claim that A := J,oxg Ao works. Indeed, to check that L, contains exactly two points in A:
by definition of A, L, NY s<a Ap contains at least two points. If L, N A contained at least three
points, then there is a least 8 such that L, N U’\/S P A, contains at least three points, which means
L,N Uﬂ/ <8 A, still contains at most two points. But by definition of Ag, we would not have either
added a new point to a line that already passes through two existing points, or added two new
points to a line (namely L, = Lg) that already had a point. O

Another useful consequence of Theorem 4.47 is the following generalization of Proposition 3.180,
which recall said that a countable subset of R generates a countable subgroup, etc.

Corollary 4.51 (assuming Choice). Let T : P(X) — P(X) be a finitary monotone set operator (in
the sense of Proposition 3.180), and k be an infinite cardinal such that 7" maps finite sets to sets of
size < k. Then for any A C X, we have |T(A)| < max(|4[, k).

Proof. Since T is finitary, we have
T(A)] = IUnen Upean T({bo, - - -, bu1})]
< nen 2gean T{bo, -+, bn—1})]
< DnenlAl" - s
< D nen max(|4], k)
= max(|4[, k).

Now by induction, 7" obeys the same bound for each n € N, thus by Proposition 3.180, so does
T(A) =AU, ., T(An). O

Example 4.52. A Q-vector space X of infinite (well-orderable) dimension &, or even just with a
generating set of cardinality k, has cardinality x. Similarly for a k-generated group, ring, etc.

Example 4.53. An R-vector space of dimension x > 280 has cardinality &.

For a further generalization replacing “finitary” with larger arities, see Exercise 4.93.

30r¢ appears to be an open problem whether such a set can be constructed without Choice! (It is known that the
existence of such a set does not imply that R is well-orderable; see A. Miller, Infinite Combinatorics and Definability.)
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4.F. Regularity, powers, and inaccessibility. What can we say about the indexed sum and
product operations (Definition 4.38)7 We henceforth work under full Choice, which is needed even
in order for the indexed operations to be well-defined.

Proposition 4.54. Let (k;)icr be a family of cardinals, such that sup;c; ki > max(|I|,Rp). Then
Y ier Fi = SUDjer Ki-
Proof. > is straightforward. For <, we have
Ylier fi < Xlier SWier Ky

= |1 - supjer K;

< (supjes £5)?

= SUpjeg Kj- U
Example 4.55. ) R, = sup,cyNp = Ry,

Example 4.56. Clearly any x = ) _, 1, hence we need the assumption that sup; x; > max(|Z], Rp).

a<k

Exercise 4.57. Show that more generally,
s s = max(supie ki, {7 € 1| i > 0},
provided the RHS is infinite. (A version of this was already used in the proof of Theorem 4.47.)
Corollary 4.58. For an infinite cardinal £ and a family of cardinals (\;);er with |I|, \; < k,
YoicrAi <K = sup;er A < K.
Proof. 1f the RHS above is finite, then clearly so is the LHS; thus one is < & iff the other is. O

Definition 4.59. A cardinal « is regular if for any family of cardinals (\;);e; with |I|,\; < Kk, we
have ) ..; A; < K, or equivalently if & is infinite, sup;c; A < k.

Exercise 4.60. Show that x is regular iff for any family of sets (A;);er with |I|,|4;| < k, we have
Uier 4il < 5.

Example 4.61. 0 is (vacuously) regular.

Example 4.62. 1 is regular: any family of cardinals ()\;);c; with |I| < 1 must be empty.

Example 4.63. 2 is regular: any family of cardinals (\;);er with |I|,\; < 2 has sum either 0 or
Ai < 2 for the unique i € 1.

Example 4.64. No 3 < n < w is regular, since n = (n — 1) + 1.

Remark 4.65. Not everyone agrees on which finite cardinals (if any) are considered regular. (Note
that if we instead take sup;c; A; < K as the primary definition, then every n < w except 0 would be
regular.) The definition we have given is the most useful from the perspective of Remark 4.70.

Example 4.66. X is regular, being closed under (binary) +.

Example 4.67. Any infinite successor cardinal kT is regular: if |[I|,\; < T, then |I|,\; < &,
whence >, A < K% =k < KT

Example 4.68. X, =) N, is not regular.

Remark 4.69. The existence of infinite regular cardinals which are not successors, called weakly
inaccessible cardinals, other than Ng, is not provable in ZFC. The reason is related to (but
slightly subtler than) Exercise 4.90: for such &, a “definable subuniverse” of Vj; called L, in which
GCH (Theorem 4.72) holds (thus “weakly inaccessible” becomes “strongly inaccessible”), would be
a model of ZFC. See also Theorem 4.72.
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Remark 4.70. In ordinary mathematics, regular cardinals are precisely the meaningful “arity
bounds” on types of operations we can equip a set with. For example:

e A group, ring, vector space, etc., has only finitary operations, meaning arities < Ng.

e For a fixed group G, a G-set (set equipped with group action) has only unary opera-
tions, meaning arities < 2. More things are true about such structures: for example, the
substructures (subsets closed under the operations) are closed under unions, as well as
intersections.

e The Borel sets in R (Example 3.184) are closed under countable Boolean operations, which
have arities < Nj.

e [t does not really make sense to consider only operations of arities < 3, say, because we can
compose a binary operation * to get a quaternary operation (a * b) x (¢ * d).

e Similarly, it does not make sense to consider operations of arities < ¥,,, because we can
compose a countable operation with ones of arities Rg, N1, No, ... to get an N,-ary operation.

e For any regular cardinal k, there are good notions of k-Borel set (ones built from intervals
via Boolean operations of size < k), k-ary first-order logic L, (with conjunctions /\ and
disjunctions \/ of size < k), etc.

In general, we say that a monotone set operator T' : P(X) — P(X) is < w-ary>! if whenever
x € T(A), then z € T(B) for some B C A with |B| < k.

Exercise 4.71. Let k > 2 be a cardinal.

(a) Show that if  is regular, then < k-ary monotone set operators are closed under composition.

(b) Show that the converse holds as well. [Hint: close under < k-ary unions in a powerset.]

(c) Show that < k-ary monotone set operators are always closed under arbitrary pointwise
unions: if T; : P(X) — P(X) is < k-ary, then so is (J; T3)(A) := U, Ti(A).

(d) Conclude that if x is regular and T is < k-ary, then so is T' (cf. Proposition 3.180). Moreover,
the transfinite sequence A = Ag C A C --- from Theorem 3.176 stabilizes at A, = T(A).

Regularity also plays an important role in cardinal exponentiation and more generally, indexed
products. Recall that by Cantor’s Theorem 4.35, k < 2% for every x; thus 2% > k™.

Continuum Hypothesis (CH). |R| = 2% = X,
Generalized Continuum Hypothesis (GCH). For every infinite cardinal x, 2% = k™.
Theorem 4.72 (Godel). If ZFC is consistent, then so is ZFC + GCH, i.e., GCH cannot be disproved.

Proof idea. Take the ZFC universe V. Roughly speaking, GCH might fail because for a set X,
Comprehension says it must have certain subsets; but it may have many more than just those.
Godel constructed a subuniverse L C V| the constructible universe, via an inductive procedure
analogous to the cumulative hierarchy (Section 3.J) but adding at each level only those subsets of
the previous level demanded by Comprehension, i.e., which are definable by a formula ¢(x). Since
there are only countably many formulas, each X € L will have the least possible 21X = |IX|t. O

Theorem 4.73 (Easton). Assume ZFC is consistent. Let F' be any (proper class) function from
infinite regular cardinals to infinite regular cardinals such that
(i) k<A = F(k) < F()\);
(i) k < F (k).
Then it is consistent with ZFC that 2® = F(k) for all infinite regular x.
31This usually gets abbreviated to “k-ary”, leading to potential confusion since x £ k. For example, “2-ary”, i.e.,

< 2-ary, means nullary or unary, but not binary.
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Example 4.74 (Cohen). In particular, CH cannot be proved from ZFC: we could declare 280 := Xy,
say, and inductively for each regular £ > Rg, 2% := the least regular > 2* for all X < k.

Remark 4.75. The assumption of regularity in Easton’s Theorem 4.73 may seem to come from
nowhere, but it is needed. A theorem of Silver says that GCH cannot first fail at R, = sup, ., Na!
The possible behaviors of cardinal exponentiation at singular (i.e., non-regular) cardinals is quite
subtle, and is a focus of modern set theory research (see e.g., Shelah’s pcf theory).

Easton’s theorem tells us that in ZFC, expressions of the form 2 essentially cannot be “evaluated”
into any simpler form; they behave like “indeterminates”, whose values may vary from universe to
universe. But given these “indeterminates”, we can evaluate many other powers and products.

Proposition 4.76. If ) is an infinite cardinal and pu < xk < p?, then £ = p?.
Proof. p* < &) < () = 1 = p O

This allows us to “evaluate” x* as long as & is not too big relative to A\. Namely, if 2 < x < 2%,
then x* = 2*. More generally, we may inductively “evaluate” x* in terms of u* for u < k, unless
the cardinals < s are closed under (—)*; in particular, £ > 2* > \. In that case, we may attempt
to use instead:

Proposition 4.77. If & is regular, \ is infinite, £ > X, and p* < & for all p < &, then £ = k.
Proof. Since k > A is regular, every function f : A — x must land in sup;te ) f(@) < k. Thus

(cardinal power) K — Uoen o/\| (set of functions)
< > acwla*  (cardinal power)

Exercise 4.78. If k above is singular, but the cardinals < & are still closed under sums of size < A
(cf. ?7), then the above still holds.

Example 4.79. For any 2 < k < 280, we have N0 = 2%0 (generalizing Example 4.37). For example,
there are just as many functions R — R as there are subsets of R.

In particular, szo = 2o,

If CH holds, then this is = Ny < Ro, whence the cardinals < Ny are closed under (—)NO7 whence
Ngo = No, whence similarly N§° = N3, etc., up to N}EO which we can’t compute since N, isn’t regular.
(It turns out that RX0 > R, always, while 0 can be quite large; see ?7.)

If CH fails, then 2% > Ry, whence Ngo = 2% Similarly to the case of CH, if now 2% = Ry, then
NJO = Ry, NJO = Ry, etc.

Exercise 4.80 (Hausdorff formula). For x > 2 and A > X, we have (x7)* = max(x*, kT).

Concerning indexed products [[,.; #i, we may reduce them to powers:

No

—
Example 4.81. 2-2---- - R, - R, = 2% . R is a product of Xy many cardinals < ¥,,, which may
however be strictly less than ¥Y0, e.g., if CH holds (see Example 4.79).

In this example, we have a product [[;.; x; where most of the ;s are bounded below sup; x;;
we may then reduce inductively to computing a product of smaller cardinals Hje j kj where
supjej Kj < supfel K, as well as a smaller product HieI\J ki where J C I with |1\ J| < |I|, and
then multiplying these two together. (That is, we are inducting lexicographically on (|/], supje 1 Ki)-)

In the remaining case, most of the k;’s are big; then we may apply the following.
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Proposition 4.82. Let (k;);er be a family of nonzero cardinals, such that for each i, we have
{j €I|k;>ri}|=II|. Then

[Lics ki = (supies ki)l
Proof. < is straightforward; we show >. WLOG I = |I| is an initial ordinal. If I is finite, both

sides are 1 (if I = 0) or max; k;; so assume [ is infinite. Let p : I x I 2 [ be a bijection. Define
q: I x I — I by induction on p(i, j) as follows: ¢(i,7) € I is least so that

Kg(ij) = Kjs q(i, j) #q(@',5") Vo', j") < p(i, 5);
this is possible because by assumption, there are /-many «’s which are > x;, while there are only
Ip(i,7)| < I-many (i, 5")’s with p(¢', j') < p(i, 7). Then because each k # 0,
[Licrri = Hieim(q) Ki

= H(i,j)e]x[ Kq(i,5)

> [Lier Hje[ K

> [licr supjer &
(using various laws for indexed products from Exercises 4.41 and 4.42). O
Exercise 4.83. Verify that indeed, for each product of nonzero cardinals [];.; x4, either the above

result applies, or we may reduce to two products [[;c; x; where either |J| < |I|, or [J| = [I[ and
sup;rE gh; < supjE ; ki (again using associative/commutative laws).

Definition 4.84. A cardinal « is a strong limit if it is infinite®? and:

o for any \ < k, we have \ < k;

e cquivalently, for any A, u < k, we have \*' < k;

e cquivalently, for any sets A, B of size < k, we have |AB| < k;
e cquivalently, for any \ < , we have 2* < k;

e equivalently, for any set A of size < k, we have |P(A4)| < k.

By Cantor’s theorem, these imply that x is a weak limit, i.e., 0 < k and A < Kk = AT < k.
Example 4.85. ¥ is a strong limit.

N
Example 4.86. The next strong limit is sup{Rg, 2%, 22" ) 92" e bl

Remark 4.87. The beth cardinals are Jy := w, J; :=2¥, 3y := 22", ..., 0, = SUPg<q 25,
Thus, for any limit ordinal «, J, is a strong limit cardinal (and X, is a weak limit cardinal).
The GCH can be stated as: N, = 3.

While regularity means that sets of size < k are closed under [ J, strong limit means they are
closed under P; these are the two fundamental set-theoretic operations. Combining them yields

Definition 4.88. A cardinal k is strongly inaccessible if it is regular and a strong limit.

Exercise 4.89. Show that « is strongly inaccessible iff it is infinite and for any family of cardinals
(Mi)ier with |I],x; < K, we have [[;c; M < k.

As the name suggests, strongly inaccessible cardinals are called such because they are so large
that other than Ny, none of them can be constructed in ZFC. This is because the “things below
them” are closed under everything that ZFC requires; thus if we had a strongly inaccessible k, we
may simply truncate the universe at s to get a smaller universe without any strongly inaccessibles.
(Similarly, Ng could not be constructed either; we had to declare its existence via the Axiom of
Infinity, without which V,, could as well be the entire universe.)

321 suppose that in some contexts, it may also be useful to regard 2 as a strong limit.
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Exercise 4.90. A set A is hereditarily of size < x if it, its elements, its elements’ elements, etc.,
are all of size < k. In other words, every set in the transitive closure | J{A} (Definition 3.189) is of
size < k. Let H, be the class of all sets hereditarily of size < k.

(a) Prove that H,, C V, for every infinite regular cardinal k. In particular, H, is a set.

(b) Prove that V,, C H, for every strong limit cardinal x. Thus, H, = Vj if k is strongly
inaccessible.

(¢) Prove the converses of (a) and (b) (assuming x is an infinite cardinal).

(d) Verify that H,, = V,; for strongly inaccessible s has the following properties:

(i) Hy is transitive.

(ii) @ € Hy, and a,b € H, = {a,b} € H,.
(iii) If I € Hy and (A;)ier € HY, then (J;c; 4i € Hy.

(iv) Ae H, = P(A) € Hy.

(v ACBeH, = AcH,.

(vi) For any A € H,, and function f: A — H,, we have f[A] € H,.

(vil) Ae H, = |JA € H,.

(viii) A,B € H, = Ax B,BA ¢ H,.

ix) If I € H, and (A;);er € HE, then [[;c; As, | ;c; Ai € He.
(x) If k is uncountable, then N € H.

(e) Conclude that H, satisfies ZFC — Infinity (assuming the real universe does), and ZFC if & is
uncountable.

(f) Note that for A € Hy, not only do we have P(A) € Hy, but also that H, thinks that P(A)
is the powerset of A. Explain why this might not be the case if, say, we did not have (i).

(g) Verify that for any A € H,, H, thinks that A is an ordinal iff A is indeed an ordinal.

(h) Verify that for any A € H,, H, thinks that A is an initial ordinal iff A is indeed such.

(i) Verify that for any A € H,, H, thinks that A is a strongly inaccessible cardinal iff A is
indeed such.

(j) Conclude that Infinity cannot be proved from ZFC — Infinity, and that the existence of a
strongly inaccessible cardinal cannot be proved from ZFC.

(k) Prove that sets U with the above properties (i)—(iv) (called Grothendieck universes) are

precisely all H, for strongly inaccessible k.

Grothendieck universes are used in areas of math that need to work with “mathematical universes”

as mathematical objects, e.g., category theory (the category of all groups, etc.).

In “ordinary” math, one rarely needs such “universes” that are closed under products of the same
arity as themselves. Rather, one sometimes wants a collection of “sufficiently small sets” that is
closed under products of some fized arities, e.g., under all countable products. For finite products,
sets of size < any infinite £ will do (by Theorem 4.47). For infinite products, we may use

Proposition 4.91. For any cardinal A, there are arbitrarily large regular x such that for all [I| < A
and (p)ie;r where each p; < k, we have [[;c; pi < K.

Proof. We may assume )\ is infinite; then any & of the form (x3)* will do. O

Example 4.92. For A = Ny, this says that there are arbitrarily large regular x such that a countable
product of cardinals < & is still < k. For such x, we have that if A C P(X) is a collection of
subsets of size < k, then the closure of A under countable Boolean operations still has size < k. For
example, k = (2%0)* works, yielding that there are 2% Borel subsets of R (see Example 3.184).

Exercise 4.93. Let x > X be infinite regular cardinals such that the conclusion of Proposition 4.91
holds, and let T': P(X) — P(X) be a < A-ary monotone set operator (see Exercise 4.71) which
maps sets of size < A to sets of size < k. Show that T' maps sets of size < k to sets of size < k (cf.
Proposition 3.180).
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4.G. A taste of descriptive set theory. The independence of the Continuum Hypothesis means
that the most familiar uncountable cardinality outside of logic, namely 2%, may or may not be the
same as the smallest uncountable cardinality w;. Now, unless you’ve studied logic before, there’s a
good chance you’ve never even heard of wy; and indeed, every concrete example of a set you’ve seen
is probably provably either countable or has cardinality > 2%°. Why is this so?

Exercise 4.94. Try to think of a subset of R which is uncountable but does not appear to easily
admit an injection from P(N).

You will likely fail, because this cannot be the case for any subset of R you can easily write down:

Exercise 4.95. Explicitly write down an injection from P(N) into the set of normal numbers z € R
(see Example 3.184).

Exercise 4.96. Explicitly define an injection from P(N) into the set of real numbers whose digits
(in base 10, or base 36) contain the complete works of Shakespeare (encoded e.g., in ASCII).

The simplest sets of reals are intervals. An open set of reals is a union of open intervals (a,b).

Remark 4.97. For any a < b, we have a bijection (a,b) = R, given by some shifted/scaled version
of arctan. Thus, any open set is either countable (indeed empty) or admits an injection from R
(which in turn admits an injection from P(N), by Example 4.36).

The next simplest are the closed sets: the complements of open sets. The name reflects the fact
that these are precisely the sets closed under limits (of sequences).

Theorem 4.98 (perfect set theorem). For any uncountable closed set A C R, we can explicitly define
an injection f : 2N < A. Moreover, the injection is monotone with respect to the lexicographical
order on 2V, and continuous: Ve > 03n € NVz,y € 2V (z[n = yln = |f(z) — f(y)| < &).

Proof. First, the intersection of A with some finite closed interval I = [a, b] must be uncountable.
Indeed, otherwise AN [n,n+ 1] would be countable for each n € Z, and so A would be the countable
union of these. Moreover, by replacing n + 1 with n + 1/m for some m > 0, we may require I to
have arbitrarily small (positive) length.

Next, whenever AN [a, b] is uncountable for some a < b, then there must exist ¢ € [a, b] such that
AnNla,c], AN e, b] are both uncountable. Indeed, let @’ := sup{z € [a,b] | |A N [a,z]] < Np}; then
there is a countable sequence zg < x1 < --- converging to a’, whence AN[a,a’) C U, cn(AN|a, x,]) is
countable, whence AN [d/,b] is uncountable. Similarly, letting b’ := inf{z € [/, ] | |AN [z, b]] < Ro},
AN |d,b] is uncountable. Then any ¢ € [a, V'] works.

Applying this argument again to [c,b], we get that whenever A N [a,b] is uncountable, there
are disjoint closed subintervals I,J C [a,b], I to the left of J, namely [a,c] and [d,b] for some
a < ¢ < d < b, such that both AN I and AN J are uncountable. Moreover, we may then further
shrink I, J to make them as short as we want.

Now let Iy = [ag, by] be the initial interval with A N Iy uncountable, WLOG with by — ag < 1.

Define subintervals (Is)sey, 2 by induction on n: given Iy = [as,bs] for s € 2" with AN I,
uncountable, find Iy, Is; C I, of length < 2-(*1Y and AN Iy, A N Iy uncountable, with Iy < Is.
Iy
IQ Il
Iopo — —1Io1 ho— —In1

Then for each z € 2N, f(x) 1= sup,cy agln 18 the unique point in [, cy Ljn, and is in A because
it is distance < 27" (= length of I,),) away from a point in AN I, for each n and A is closed.
Moreover, f is monotone since for r <jex y, we have f(z) € Ipjny1) < Ly|(nt1) 2 f(y) for the least n

such that z(n) # y(n); and f is continuous since zjn = yln = |f(x) — f(y)| < 27" O
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Example 4.99. Consider A := {z € R | sin(cos(z? — 7%)) < 2° — 2 + 1}. I have no idea what
this set is, or even if it’s nonempty; but I do know that it cannot be a counterexample to the CH.
Moreover, if it’s uncountable, then there is a continuous injection f : 2N — A, which is “explicitly
definable” since it suffices to specify f(x) at the countably many x € 2 with only finitely many 1’s.

In fact, the scope of the perfect set theorem is much broader:

Exercise 4.100. A G set is a countable intersection of open sets [,y Un. By replacing each Uy,
with ﬂmgn U, we may assume Uy DUy D - -.

(a) Verify that each closed set A C R is Gs. [Consider the nearest distance to A.]
(b) Prove the perfect set theorem for Gs sets. [Modify the above argument to ensure that each
I, for s € 2™ is contained in one of the open intervals making up U,.]
(c) Verify that A := {x € R | every finite string of digits appears once in the digits of x} is Gy.
Can you think of an explicit injection 2 «— A?
Call A C R soluble if there is a G5 set X C R and a continuous bijection g : X — R such that
g 1[A] C X is closed (under limits that exist in X).

(d) Prove that if A C R is soluble, then the perfect theorem holds for A: either A is countable,
or there is a continuous injection f : 2N — A (we cannot require monotonicity in general).

(e) Verify that closed sets are soluble.

(f) Prove that open sets are soluble. [Consider exp[A] U —exp[R \ A].]

) Prove that a complement of a soluble set is soluble. [Apply (f) to R\ g~ 1[A4].]

) Suppose A C R such that for every Gs set X C R and continuous bijection g : X — R,
g~ 1[A] is soluble, and moreover B C R also has this property. Prove that AU B then also
has this property.

(i) Moreover, if Ag € Ay C --- C R all have this property, then so does J,,c An-
(j) All Borel sets (Example 3.184) are soluble, hence the perfect set theorem holds for them.
(k) (hard) All soluble sets are Borel.

(g
(h

Descriptive set theory in general studies the properties of these kinds of “explicitly definable”
sets. The perfect set property, a strong form of CH, is one among a long list of nice properties one can
prove for such sets but not for arbitrary sets: for example, many of the pathological constructions
using Choice from Section 3.K also disappear.
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