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Abstract
We study the lattice of all Borel clones on 2 = {0, 1}: classes of Borel functions f : 2n→ 2,

n ≤ ω, which are closed under composition and include all projections. This is a natural extension
to countable arities of Post’s 1941 classification of all clones of finitary Boolean functions. Every
Borel clone restricts to a finitary clone, yielding a “projection” from the lattice of all Borel clones
to Post’s lattice. It is well-known that each finitary clone of affine mod 2 functions admits a
unique extension to a Borel clone. We show that over each finitary clone containing either both
∧,∨, or the 2-out-of-3 median operation, there lie at least 2 but only finitely many Borel clones.
Over the remaining clones in Post’s lattice, we give only a partial classification of the Borel
extensions, and present some evidence that the full structure may be quite complicated.
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Figure 1.1: Post’s lattice Clo<ω(2) of all clones of finitary Boolean functions 2n → 2. See Section 3 for the
definitions of these clones, functions, and relations. (Here, all clones are implicitly restricted to finitary.)
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1 Introduction
It is a standard exercise in propositional logic that the logical connectives ∧,∨,¬ can express all
Boolean functions 2n→ 2 of finite arity; in fact ∧,¬ already suffice. On the other hand, ∧,∨ do
not suffice to generate all Boolean functions, for they are both “positive” connectives; and in fact
together with the constant truth values 1, 0, they generate precisely all monotone Boolean functions.
Leaving out the constants 1, 0, we obtain only the monotone functions fixing 1, 0, etc. In 1941, Post
[Pos41] gave a complete classification of all possible classes of finitary Boolean functions 2n→ 2
generated by a class of functions under composition, known as clones on 2; these may be thought
of as all “sublogics” of classical finitary 2-valued propositional logic. The resulting countable lattice
of all clones on 2, known as Post’s lattice, is depicted in Figure 1.1. For background on Post’s
lattice and clone theory, see [FMMT22], [Lau06], [Sze86].

In this paper, we consider the analogous problem of classifying all clones of countable arity
Boolean functions 2n→ 2, n ≤ ω; these may be thought of as “sublogics” of countably infinitary
propositional logic. A Boolean function 2n→ 2 may be obtained as a composition of the countable
connectives

∧
,
∨

and ¬ iff it is a Borel function, i.e., the indicator function of a Borel set A ⊆ 2n.
Let OB

2 ⊆
⊔

n≤ω 22n denote the clone of all Borel functions. We will mostly restrict attention to
subclones of OB

2 , thereby ruling out pathological “connectives” such as nonprincipal ultrafilters
which cannot be explicitly defined. Note that definability constraints such as being Borel can
interact with the algebraic structure on 2 in intricate ways. For example, a Borel function 2n→ 2 of
countable arity which is affine over Z/2Z can in fact depend only on finitely many variables; but
this is no longer true for any condition weaker (in a precise sense; see below) than affinity.

Even restricted to the Borel clones on 2, we do not obtain a complete classification in this paper.
However, we obtain a classification of a large “region” of the lattice of all Borel clones, as well as
a partial classification of the remaining “regions” along with some indications that they may be
difficult to fully classify. In order to state our results more precisely, we now give an overview of our
approach, which is based on Post’s classification of the finitary clones.

1.A The bundle of Borel clones

Let O<ω
2 :=

⊔
n<ω 22n denote the clone of all finitary functions. Thus Post’s lattice 1.1 consists of

all finitary subclones of O<ω
2 , while we seek to classify all countable-arity subclones of OB

2 . Given
such a subclone F ⊆ OB

2 , we may restrict to the finitary functions F ∩O<ω
2 within it. We get a map

CloB(2) := {Borel clones on 2} −↠ {finitary clones on 2} =: Clo<ω(2)(1.2)
F 7−→ F ∩O<ω

2 ,

which turns out to be a complete lattice homomorphism (see Corollary 2.22 and (4.3)). Thus, we
may regard the lattice CloB(2) of Borel clones on 2 as a “fiber bundle” over Post’s lattice Clo<ω(2),
depicted in Figure 1.5; and the classification problem for Borel clones decomposes into, for each
finitary clone G in Post’s lattice, classifying the “fiber” over G, of all Borel clones F with finitary
restriction G. When G is defined as all the finitary functions preserving certain finitary relations,
then such F are precisely the Borel clones of functions preserving the same relations, and containing
all the finitary such functions G.

To illustrate this, consider the following clones, which are the maximal nodes in Post’s lattice
(defined in more detail in Section 3):
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• M := all monotone (i.e., ≤-preserving) functions 2n→ 2.

• Tc := all functions 2n→ 2 preserving the constant c ∈ {0, 1}.
• D := all functions 2n→ 2 equal to their own de Morgan dual.

• A := all functions 2n→ 2 affine over Z/2Z.

We denote the finitary, respectively Borel, versions of these clones by a superscript <ω, resp., B.
Thus, for example, M<ω is the clone of finitary monotone functions, generated by ∧,∨, 0, 1. Then
the Borel clones F in the fiber of the bundle (1.2) over M<ω are those such that ∧,∨, 0, 1 ∈ F ⊆MB.
There is a greatest such F , namely MB, as well as a least, namely the Borel clone generated by
∧,∨, 0, 1; these are distinct since the former contains the countable disjunction (join/supremum)∨

. In contrast, in the fiber over A<ω, there lies only a single Borel clone, by the aforementioned
fact that Borel affine maps can depend on only finitely many variables. It follows that the same
holds over each subclone of A<ω in Post’s lattice, e.g., AD<ω := A<ω ∩ D<ω (we use juxtaposition
to abbreviate intersection of clones.).

1.B Main results

We are able to completely classify the Borel clones lying over a node near the top of Post’s lattice:

Theorem 1.3 (see Section 4.A).

(a) Over each of the 8 finitary clones in the “cube” at the top of Post’s lattice 1.1, consisting of
all intersections of combinations of M,T0,T1, there lie at least 2 but only finitely many Borel
clones restricting to that finitary clone, namely: 2 Borel clones over O<ω

2 ; 3 over each of
T<ω

0 ,T<ω
1 ; 5 over T0T

<ω
1 ; 4 over M<ω; 6 over each of MT<ω

0 ,MT<ω
1 ; and 9 over MT0T

<ω
1 .

(b) Over the finitary clones D<ω,DT<ω
0 ,DM<ω, there lie 2 , 3 , 3 Borel clones respectively.

(c) Over each finitary clone F in Post’s lattice 1.1, there lies only 1 Borel clone iff F ⊆ A.

Figure 1.5 (shaded regions) depicts those fibers of the bundle CloB(2) ↠ Clo<ω(2) from (1.2) in
which we get a complete classification of the Borel clones. The proofs are spread out over several
results in Section 4.A; see there for more detailed pictures of each of the fibers individually.

Over the remaining finitary clones in Post’s lattice 1.1, we do not get a complete classification of
the Borel clones. Instead, we exhibit a wide variety of complex behaviors among the Borel clones.
In order to state these, we recall some more clones from Post’s lattice:

• Λ := all indicator functions f : 2n→ 2 of filters f−1(1) ⊆ 2n, or f = 0.

• T0,k := all indicator functions f : 2n → 2 of sets f−1(1) ⊆ 2n with the k-ary intersection
property (any k bit strings in f−1(1) have bitwise conjunction ̸= 0⃗); thus T0 = T0,1.

• T0,<ω :=
⋂

k<ω T0,k = all indicator functions of sets with the finite intersection property.

• V,T1,k,T1,<ω are the de Morgan duals of these, concerning ideals/disjunctions.

As before, e.g., T<ω
0,k denotes the clone of all finitary such functions, while TB

0,k denotes the corre-
sponding Borel clone. Note that T<ω

0,<ω thus consists of all finitary functions which are bounded
above by some particular variable (by considering a conjunction of strings with a single 0); whereas
TB

0,<ω ⊇ ΛB, which includes all Borel filters ⊆ 2ω, is much more complicated.
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Theorem 1.4 (see Sections 4.B to 4.D, especially Theorems 4.93 and 4.61 and Example 4.62).

(a) Over each of finitary clones T0,k,T0,kT1,MT0,k,MT0,kT1 in the left “side tube” of Post’s lattice
1.1, for k < ω, there lie at least 2k + 1, 2k + k + 2, 2k + 4, 2k + k + 6 Borel clones, respectively.

(b) Over each of the finitary clones T0,<ω and its intersections with M,T1 (at the “base of the
side tube”), there lie at least countably infinitely many Borel clones.

(c) Over each of the finitary clones Λ,ΛT1,ΛT0,ΛT0T1 and its intersections with T0,T1 (below
the “side tube”), there lie precisely 3 , 3 , 4 , 4 Borel clones F ⊆ 22≤ω respectively which
are “countably closed” in 22ω , i.e., contain all functions which agree at any countably many
input strings x⃗0, x⃗1, x⃗2, . . . ∈ 2ω with some function in F . However , there also exist other
“non-countably closed” clones of Borel filters.

Similarly for the de Morgan duals of these clones.

Figure 1.6 (shaded regions) depicts the fibers of the bundle (1.2) mentioned above, in which we
get only a partial classification of the Borel clones (these clones are defined in Section 4.D); see
also Figures 4.29, 4.53 and 4.70. As these pictures indicate, the lower bounds on the numbers of
Borel clones in Theorem 1.4(a) and (b) are merely the numerical counts of detailed order-theoretic
structures on these fibers. For instance, the constant terms in these lower bounds count the fully
classified lower (solid-shaded in 1.6) portions of each fiber, with 2, 3, 4, 6 elements respectively, which
are isomorphic to four of the fibers in Theorem 1.3(a). On the other hand, the upper, hatch-shaded
“cobweb” portions of 1.6 contribute 2k distinct Borel clones in each fiber, with a recursively generated
order-structure; but we cannot rule out the existence of other Borel clones between these.

Theorem 1.4(c) shows that in a precise sense, it is “difficult” to fully classify all Borel clones
over Λ<ω and its variants. Recall that by standard clone theory, every clone F ⊆ ⊔n 22n can be
defined as all Boolean functions which preserve some given set of k-ary relations R ⊆ 2k for various
k, called polymorphisms of those relations; this includes R = ≤ ⊆ 22 (yielding the monotone
functions M), ̸= ⊆ 22 (yielding the self-dual functions D), etc. The countably closed clones F as in
1.4(c) are precisely those which can be defined as the polymorphisms of countable-arity relations;
for example, polymorphisms of the ω-ary convergence relation “limi→∞ xi = 0” yield the functions
f : 2n → 2 which fix and are continuous at 0⃗, denoted L0 near the tops of Figures 1.5 and 1.6.
Thus, Theorem 1.4(c) says that on the one hand, there are only a few Borel clones of filters which
are definable by countable-arity relations; on the other hand, such relations cannot distinguish all
distinct Borel clones.

We now briefly outline our proof strategy for the aforementioned positive classification results.
The combinatorial core consists of a handful of simple “Wadge’s lemma”-type dichotomies, showing
that every Borel clone F must either be contained in a specific clone, or else contain a “minimally
complex” function outside of that clone; see Lemmas 4.7, 4.45, 4.54 and 4.74. These dichotomies are
used to bootstrap several abstract structural mappings, showing that large regions of the lattice of
Borel clones CloB(2) are isomorphic or embed into each other; see Figure 3.28 and Propositions 3.14,
3.21, 3.31, 4.34 and 4.86. By applying these isomorphisms repeatedly, we then transport the core
dichotomies across various regions of the lattice CloB(2), in order to resolve it into the pieces shown
in Figures 1.5 and 1.6.
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Figure 1.5: Bundle of Borel clones CloB(2) ↠ Clo<ω(2) projecting to Post’s lattice 1.1 via finitary
restriction, with fibers (shaded blobs) in which a complete classification of the Borel clones is known.
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Figure 1.6: Fibers of the bundle 1.5 in which only a partial classification of the Borel clones is known
(solid-shaded = fully classified; hatch-shaded = at least the shown nodes are known to be distinct).
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1.C Related work and future directions

An unusual feature of our classification shown in Figure 1.6 is that among the Borel clones over
T0,2 and its variants, we are able to fully characterize the bottommost as well as topmost clones,
but not the intermediate clones L0,2,1 and its variants. This has to do with the special connection
between the clone MT0,2 and the self-dual monotone functions DM (the function ∀3

2 = ∃3
2 : 23→ 2

is the 2-out-of-3 median operation). It remains to be seen whether similar ideas may be used to
characterize upper regions (the “cobwebs” in 1.6) of the T0,k Borel clones for k ≥ 3.

The Example 4.62 of a Borel clone not definable by countable-arity relations mentioned in
Theorem 1.4(c) essentially follows from a result of Kanovei–Reeken [KR03] on Borel equivalence
relations and ideals. This result uses deep set-theoretic tools such as forcing and Hjorth’s turbulence
theory [Hjo00], while showing something much stronger (namely, Borel non-reducibility of equivalence
relations) than is needed for the application to Borel clones (namely, Rudin–Keisler non-reducibility
between Borel filters). We expect there to be other examples of distinct Borel clones inseparable by
countable-arity relations; a better understanding of the connections with the theory of Borel ideals
and filters (see [Sol99], [Hru11], [Kan08]) may help with such a pursuit.

More generally, we are pleasantly surprised that a large part of the lattice of Borel clones seems
to be classifiable using only abstract lattice-theoretic reasoning plus a few simple combinatorial
dichotomies, as described in the preceding subsection. In particular, we make no use in this paper
of more powerful techniques such as determinacy, forcing, or effective descriptive set theory (see
[Mos09], [Kan08]). This is especially surprising given the use of such techniques in a structure
theory which is conceptually related to that of Borel clones: the Wadge hierarchy [Wad83]. Recall
that a Wadge class (on 2ω) is essentially a family F of functions 2ω → 2 which is closed under
right-composition with arbitrary continuous functions. The lattice (essentially a well-order) of all
Wadge classes of Borel functions has been completely described [Wad83], [Lou83].

We note that the classification of Borel clones in this paper is formally “orthogonal” to the
Wadge hierarchy: every Wadge class contains all finitary (i.e., continuous) functions, whereas a
Borel clone containing all finitary functions and a single discontinuous function must be the entirety
of OB

2 . Rather, we expect that the machinery we have developed may be useful in future studies
of infinitary clones of “definable” Boolean functions beyond Borel (under suitable determinacy
hypotheses), with the Wadge hierarchy as a “backbone”. Partly for this reason, we have taken care
to state our main lemmas, such as the structural lattice isomorphisms mentioned above, as much as
possible for arbitrary infinitary clones on 2, without assuming Borelness.

Clones of polymorphisms have received much attention in recent years in connection with
constraint satisfation problems (CSPs), a large class of computational/combinatorial problems,
especially since the proof of the CSP dichotomy theorem [Bul17], [Zhu17] using universal-algebraic
methods. See [Bod21] for a detailed survey of this area. Recently, clones and related concepts have
also seen applications to CSPs in Borel combinatorics [Tho22], [KTV23]. We hope to investigate
potential combinatorial applications of Borel clones on 2 in future work.
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2 Clone theory
We begin by reviewing the concepts from general clone theory which we will need. All of the ideas
here are standard in universal algebra; see [FMMT22], [Lau06], [Sze86], [Bod21]. However, we will
be needing the infinite-arity (even occasionally uncountable-arity) versions of the usual machinery,
which may be less familiar. We will sketch the less routine proofs for the reader’s convenience.

2.A Lattices and adjunctions

Recall that a lattice is a poset in which any two elements a, b have a greatest lower bound or meet
a ∧ b as well as least upper bound or join a ∨ b, while a complete lattice is a poset in which
arbitrarily many elements ai (possibly none) have a meet

∧
i ai and join

∨
i ai. A meet-irreducible

element in a complete lattice is one which cannot be obtained as a meet of strictly smaller elements,
i.e., has a unique immediate predecessor; join-irreducible is defined similarly.

Recall that an adjunction or Galois connection between two posets A, B is a pair of maps
f : A→B (the left adjoint) and g : B→A (the right adjoint) satisfying

(2.1) f(a) ≤ b ⇐⇒ a ≤ g(b),

denoted f ⊣ g. A left adjoint preserves all existing joins, while a right adjoint preserves all existing
meets; the converses hold assuming A, B are complete lattices. If B is replaced with its order-reversal
Bop, then (2.1) becomes

b ≤ f(a) ⇐⇒ a ≤ g(b)
(we call f, g dually adjoint on the right), and each of f, g maps joins to meets. In either case, we
have g ◦ f = idA iff f is injective iff g is surjective, and dually for f ◦ g = idB.

The interval between elements a, b ∈ A of a poset is

[a, b] := {x ∈ A | a ≤ x ≤ b}.
Given elements a, b, c, d ∈ A of a lattice, such that b, c ∈ [a, d], we have the modularity adjunction

(2.2) [a, b] [c, d].
c∨(−)

b∧(−)

⊣

If these form an isomorphism, then necessarily a = b ∧ c and d = b ∨ c. (Recall that the lattice A is
called modular if we have such a modularity isomorphism for all b, c ∈ A.) See Figure 2.3.

For more information on general lattice theory, see [Grä03], [GHK+03], [Joh82].

2.B Clones

Convention 2.4. The arity of an operation or relation will always be a cardinal, by which we
mean a (von Neumann) initial ordinal. We will use the letters k, l, m, n for cardinals, including
infinite ones. For a class N of cardinals, by N-ary we mean n-ary for some n ∈ N . We will use the
letters K, L, M, N for classes of cardinals.

We abuse notation by writing n instead of {n} when convenient. For a regular cardinal κ, we
write N = <κ for the set of all cardinals n < κ. This includes the case κ = ω, where <ω is formally
the same as the set ω; however, “<ω-ary” means finitary, while “ω-ary” means countably infinitary.
We will use the letters κ, λ, µ, ν for regular cardinals. We also use ≤κ as an abbreviation for <κ+.

We will occasionally use N = <∞ to mean the class of all cardinals.
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Figure 2.3: The modularity adjunction [a, b] ⇄ [c, d] in a lattice.

Notation 2.5. Let N be a class of cardinals, X be a set. We let

ON
X :=

⊔

n∈N

XXn

denote the class of N -ary functions on X. We also let OX := O<∞
X denote all functions on X.

For a subclass F ⊆ ON
X of N -ary functions and n ∈ N , we let

F n := F ∩On
X

denote all n-ary functions in F . For a subclass of cardinals M ⊆ N , we let

F M := F ∩OM
X =

⊔

m∈M

F m

denote the M-ary restriction of F . Note that the notation ON
X can thus be consistently interpreted

as the N -ary restriction of OX = O<∞
X .

Definition 2.6. We say that F ⊆ ON
X is an N-ary clone on X if it contains all projections

πi = πn
i : Xn −→ X

x⃗ 7−→ xi

for i < n ∈ N , as well as all compositions

g(f⃗) = g ◦ f⃗ : Xm −→ X

x⃗ 7−→ g(f0(x⃗), f1(x⃗), . . . )

for m, n ∈ N , g ∈ F n, f⃗ = (fi)i<n ∈ (F m)n. Denote the complete lattice of N -ary clones on X by

CloN (X) ⊆ P(ON
X).

Notation 2.7. For an arbitrary class of N -ary functions F ⊆ ON
X , we let

⟨F ⟩N ⊆ ON
X

denote the N-ary clone generated by F , i.e., the smallest N -ary clone containing F .
We also write ⟨F ⟩ := ⟨F ⟩<∞.

10



Lemma 2.8. ⟨F ⟩N ⊆ ON
X is also the smallest class of N-ary functions containing all N-ary

projections and closed under left composition with functions in F .

Proof sketch. It suffices to verify that said smallest class, call it G, is closed under composition.
Indeed, it is easily checked that {f ∈ ON

X | ∀g⃗ ∈ G (f ◦ g⃗ ∈ G)} contains all projections and is closed
under left composition with functions in F , hence contains G.

Note that this description of ⟨F ⟩N separately characterizes the set of n-ary functions in ⟨F ⟩N ,
for each n ∈ N (independently of the other cardinals in N). Thus

Corollary 2.9. For two classes of cardinals M ⊆ N and F ⊆ OM
X , we have ⟨F ⟩N ∩OM

X = ⟨F ⟩M .
Thus, if F is an M -ary clone, then ⟨F ⟩N ∩OM

X = F . In other words, the adjunction

CloM (X) CloN (X)
⟨−⟩N

(−)∩OM
X

⊣
exhibits the lattice CloM (X) as a retract of CloN (X).

When M = <µ and N = <ν for infinite regular cardinals µ ≤ ν, we have a simpler description
of ⟨F ⟩N for an M -ary clone F :

Lemma 2.10. For a regular cardinal µ and <µ-ary clone F ⊆ O<µ
X , for any cardinal n,

⟨F ⟩n = {f ◦ (πn
s(i))i<m | m < µ, f ∈ F m, s : m ↪→ n}

consists of precisely the n-ary functions in F which depend on only <µ-many variables.

Proof sketch. It is easily checked that said class contains all projections and is closed under left
composition with functions in F (using regularity of µ to disjointify variables).

Corollary 2.11. For regular cardinals µ ≤ ν, the image of the map

⟨−⟩<ν : Clo<µ(X) −→ Clo<ν(X)

consists of precisely the <ν-ary subclones of ⟨O<µ
X ⟩<ν .

Definition 2.12. We call a function f : Xn → X essentially <µ-ary if it depends on only
<µ-many variables, i.e., it is in ⟨O<µ

X ⟩. We call a clone F essentially <µ-ary if it consists entirely
of essentially <µ-ary functions, i.e., F ⊆ ⟨O<µ

X ⟩.

Remark 2.13. If X is finite, then an essentially finitary function f : Xn → X is one which is
continuous with respect to the discrete topology on X and the product topology on Xn.

More generally, for a class of cardinals M , let us define a M-topology to mean a family of
sets closed under arbitrary unions and M -ary intersections, and the product M-topology on
Xn to mean the smallest M -topology containing preimages of arbitrary sets under the projections
πi : Xn→ X (so interpolating between the usual product topology when M = <ω and the box
topology when M = <∞). Then, for |X| < µ, an essentially <µ-ary function f : Xn→X is one
which is <µ-continuous, i.e., the preimage of an arbitrary set belongs to the product <µ-topology.
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2.C Polymorphisms

Notation 2.14. Let K be a class of cardinals, X be a set. We let

RK
X :=

⊔

k∈K

P(Xk)

denote the class of all K-ary relations on X. We will loosely refer to a subclass M ⊆ RK
X as a

(relational) K-ary structure on X. We use similar notations as for functions (Notation 2.5) to
denote arities: Mk :=M∩Rk

X means the k-ary relations in M; RX := R<∞
X ; etc.

Definition 2.15. Let X be a set, f : Xn→X be an n-ary function, R ⊆ Xk be a k-ary relation,
for some cardinals n, k. The following phrases are synonymous:

• f preserves R, or is a polymorphism of R.
• f is a homomorphism (X, R)n→(X, R), where (X, R)n := (Xn, Rn) is the product structure

(in the category of structures with a single n-ary relation).
• R is f-invariant, or closed under f , or a substructure of the product structure (X, f)k

where f acts coordinatewise.
• For any k × n matrix (x⃗i)i<k = (xi,j)i<k,j<n ∈ Xk×n, if each (xi,j)i<k ∈ R for fixed j < n,

then also (f(x⃗i))i<k = (f((xi,j)j<n))i<k ∈ R.

x0,0 x0,1 x0,2 · · · f(x⃗0)

x1,0 x1,1 x1,2 · · · f(x⃗1)
...

...
...

. . .
...

R R R R

→
∈ ∈ ∈ ∈

k

n

If these hold, we write interchangeably

f ∈ Pol(R) ⇐⇒ R ∈ Inv(f)

where Pol(R) ⊆ OX is the class of all polymorphisms of R, and Inv(f) ⊆ RX is the class of all
f -invariant relations. More generally, for any M⊆ RX and F ⊆ OX , we write

Pol(M) :=
⋂

R∈M
Pol(R), Inv(F ) :=

⋂

f∈F

Inv(f).

We let also PolN (M) := Pol(M) ∩ON
X and InvK(F ) := Inv(F ) ∩RK

X for classes of cardinals N, K.
Thus for any classes of cardinals N, K, we have an (order-reversing) Galois connection

(2.16) P(ON
X) P(RK

X),
InvK

PolN

i.e., F ⊆ Pol(M) ⇐⇒ M⊆ Inv(F ) ⇐⇒ every f ∈ F preserves every R ∈M.
Every class of functions of the form Pol(M) is a clone. Thus the fixed classes on the left side of

the above Galois connection, i.e., those F ⊆ ON
X for which F = PolN (InvK(F )), must in particular

be clones. We may characterize them more precisely as follows:

12



Lemma 2.17. For any class of functions F ⊆ OX , class of cardinals K, and n-ary function
g : Xn → X, we have g ∈ Poln(InvK(F )) iff for any K-ary family of n-tuples (x⃗i)i<k ∈ (Xn)k,
where k ∈ K, there is an f ∈ ⟨F ⟩n such that f(x⃗i) = g(x⃗i) for each i < k.

In other words, this says that Poln(InvK(F )) is the K-closure of ⟨F ⟩n ⊆ XXn , with respect to
the product K-topology from Remark 2.13. For instance:

• When K = <ω, we get that Poln(Inv<ω(F )) = ⟨F ⟩n is the usual closure of ⟨F ⟩n ⊆ XXn .

• When K = <ω1, we get that Poln(Inv<ω1(F )) consists of all functions agreeing on any
countably many n-tuples with a function in ⟨F ⟩n; we call this the countable closure of ⟨F ⟩n.

• When K ⊇ ≤|X|n, e.g., X is finite, n countable, and K = ≤2ℵ0 , we get Poln(InvK(F )) = ⟨F ⟩n.

Proof. Any Poln(R) for a K-ary relation R is K-closed, since for a function to preserve R requires
checking its values only on each K-ary family of n-tuples at a time; thus Poln(InvK(F )) contains
the K-closure of F . Conversely, for g ∈ Poln(InvK(F )) and (x⃗i)i<k ∈ (Xn)k, the forward ⟨F ⟩-orbit
R := {(f(x⃗i))i<k | f ∈ ⟨F ⟩n} is F -invariant, hence preserved by g; we have (xi,j)i<k = (πn

j (x⃗i))i<k ∈
R for each j, whence (g(x⃗i))i<k ∈ R, i.e., (g(x⃗i))i<k = (f(x⃗i))i<k for some f ∈ ⟨F ⟩n.

On the right side of the adjunction (2.16), the fixed classes are characterized as follows:

Lemma 2.18. For any class of relations M⊆ RX , regular cardinal ν, and k-ary relation S ⊆ Xk,
we have S ∈ Invk(Pol<ν(M)) iff S is a <ν-directed union of relations positive-primitively
definable from M, i.e., (infinitary) first-order definable from the relations in M using =, ∃ over
arbitrarily many variables, and

∧
of arbitrary arity.

Here by a <ν-directed union we mean a union of a family of sets in which any <ν-sized subfamily
has an upper bound. Let

PPStrK(X) ⊆ P(RK
X)

denote the class of positive-primitive K-ary structures, by which we mean structures closed
under positive-primitive definability (sometimes called coclones; see [Lau06]). The above then says
that InvK(Pol<ν(M)) =M is the closure under <ν-directed union of the positive-primitive K-ary
structure generated by M. Note that for sufficiently large ν, namely ν > 2|X|k , <ν-directed unions
in Xk are trivial; thus we simply get the positive-primitively definable relations in that case.

Proof. Any Invk(f) for a <ν-ary function f is easily seen to be closed under <ν-directed union
and positive-primitive definability; thus Invk(Pol<ν(M)) contains all such R. Conversely, let
S ∈ Invk(Pol<ν(M)). Then any family of tuples (x⃗j)j<n ∈ Sn where n < ν generates a
smallest Pol<ν(M)-invariant subset R((x⃗j)j<n) ⊆ Xk contained in S; and S is the <ν-directed
union of all of these R((x⃗j)j<n). But each R((x⃗j)j<n) is the saturation of (x⃗j)j<n under all
f ∈ Poln(M) (as in the proof of Lemma 2.17, with the “transpose matrix” of (x⃗j)j); and
“∃f ∈ XXn (f is a polymorphism and f((x⃗j)j) = y⃗)” is a positive-primitive formula (where the
existential is over |Xn|-many variables).

The preceding two lemmas are the natural generalizations of classical results of Geiger [Gei68]
and Bodnarčuk–Kalužnin–Kotov–Romov [BKKR69] to arbitrary arities.
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2.D Comparing arities

The Pol–Inv adjunction (2.16) interacts with the change of arity adjunction from Corollary 2.9 as
follows. For classes of cardinals M ⊆ N and K, we have the diagram

(2.19)

P(ON
X) CloN (X) PPStrK(X)op P(RK

X)op

P(OM
X ) CloM (X)

(−)∩OM
X

⟨−⟩N

⊣

⊣ (−)∩OM
X

InvK

⊣

PolN

⊣

PolM
⊣

⟨−⟩M

⊣

⟨−⟩N
InvK

in which the two diagrams of left/right adjoints each commute, and the unmarked arrows are
inclusions. For sufficiently large K, InvK is an embedding of both CloN (X) and CloM (X) into
PPStrK(X)op by Lemma 2.17. Thus for instance, commutativity of the triangle yields

Corollary 2.20. For a set of finitary functions F ⊆ O<ω
X , the countable clone it generates is

⟨F ⟩<ω1 = Pol<ω1(Inv(F )). If X is finite, it suffices to take Inv≤2ℵ0 .

On the other hand, if M, K are such that PolM , InvK form inverse order-isomorphisms CloM (X) ≅
PPStrK(X)op by Lemmas 2.17 and 2.18, e.g., X is finite and M = K = <ω, then the triangle
exhibits this common lattice as a retract of CloN (X) in two different ways.

Lemma 2.21. For a finite X, regular cardinal ν, and <ν-ary clone F , Pol<ω(Inv<ω(F )) = F ∩O<ω
X .

Proof. For n < ω, Poln(Inv<ω(F )) is by Lemma 2.17 the closure of F n; but F n is finite.

Corollary 2.22. For a finite X and regular cardinal ν, the adjunction of Corollary 2.9 admits a
further right adjoint:

Clo<ν(X)

Clo<ω(X)

(−)∩O<ω
X⟨−⟩<ν ⊣ Pol<ν ◦ Inv<ω=⟨−⟩<ν⊣

In other words, the complete lattice Clo<ν(X) of <ν-ary clones admits the complete lattice Clo<ω(X)
of finitary clones as a quotient (via restriction to finitary functions). Thus we may regard the former
lattice as a “bundle” over the latter . Each finitary clone F ∈ Clo<ω(X) admits a least extension to
a <ν-ary clone, namely ⟨F ⟩<ν = {essentially finite ν-ary versions of functions in F}, as well as a
greatest extension to a <ν-ary clone, namely ⟨F ⟩<ν = {pointwise limits of functions in ⟨F ⟩<ν}.

Notation 2.23. In the situation of Corollary 2.22, for a finitary clone F ∈ Clo<ω(X), we write

Clo<ν
F (X) := [⟨F ⟩<ν , ⟨F ⟩<ν ] ⊆ Clo<ν(X)

for the interval of <ν-ary clones with finitary restriction F , i.e., the fiber of the bundle 2.22 over F .

As is typical in discussions of Post’s lattice, we will also adopt the following
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Convention 2.24. We will henceforth assume that clones do not contain nullary functions (con-
stants). Thus, when we say e.g., a “<ω-ary clone”, we really mean N -ary for N = {n | 0 < n < ω}.
When we refer to a constant function, e.g., 0 ∈ 2, we will always mean 0 : 2n→ 2 for some n > 0.

This convention is used to eliminate uninteresting duplication when classifying clones on a given
set such as X = 2. Without it, for each clone F containing a positive-arity constant function c = 0
or 1, we may arbitrarily choose whether or not to include the nullary versions of all constants in F .
Thus, the classification of clones on 2 possibly containing nullary functions is essentially the same
as for clones without, except that clones with constants are duplicated.

3 Clones on 2
In this section, we discuss general aspects of clones of arbitrary arity on 2 = {0, 1}. In Section 3.A,
we define the standard operations (logical connectives) and invariant relations used to specify the
clones in Post’s lattice Clo<ω(2), as well as their infinitary generalizations. We then define the
standard clones in Post’s lattice and state Post’s theorem in Section 3.B. In Sections 3.C to 3.E, we
introduce some operators on functions that map between different regions of Post’s lattice.

3.A Basic functions and relations on 2
Definition 3.1. We define the following functions on 2 of various arities:

• ¬ : 2→ 2 is the bit flip (logical negation).

Given now any other function f : 2n→ 2, its de Morgan dual is its ¬-conjugate

δ(f) := ¬ ◦ f ◦ ¬.

This is an automorphism of the clone O2; thus below, anything said about a function or a clone
automatically transfers to its de Morgan dual.

• 0n, 1n : 2n→ 2 are the constant functions.
• ∧ = ∧2 : 22→ 2 is binary conjunction (minimum); ∨ = δ(∧) is binary disjunction.
• ∧n or

∧n : 2n→ 2 is n-ary conjunction;
∧

by default means
∧ω. Similarly for

∨n := δ(
∧n).

• ∀n
k : 2n→ 2 and its dual ∃n

k : 2n→ 2, where 0 ≤ k ≤ n+, are given by:

∀n
k(x⃗) :=

∧

I⊆n
|I|≥k

∨

i∈I

xi =
∨

J⊆n
|n\J |<k

∧

j∈J

xj = “all but < k inputs are true”,

∃n
k(x⃗) :=

∨

I⊆n
|I|≥k

∧

i∈I

xi =
∧

J⊆n
|n\J |<k

∨

j∈J

xj = “at least ≥ k inputs are true”.

Note that ∀n
1 = ∧n, and ∃n

1 = ∨n. Note also that for k, n < ω, we have ∀n
k = ∃n

n−k+1. In
particular, ∀3

2 = ∃3
2 is the 2-out-of-3 median function

∀3
2(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) = ∃3

2(x, y, z).

By default, ∀k means ∀ω
k : 2ω→ 2, and similarly ∃k := ∃ω

k .
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• lim inf := ∀ω : 2ω→ 2 and its dual lim sup := ∃ω, which may be written more simply as:

lim inf x⃗ =
∨

i∈ω

∧

j≥i

xj , lim sup x⃗ =
∧

i∈ω

∨

j≥i

xj .

We thus have the following ordering among all aforementioned functions of arity ω:

∀0 = 0 ≤ ∀1 =
∧ ≤ ∀2 ≤ ∀3 ≤ · · · ≤ ∀ω = lim inf ≤ lim sup = ∃ω ≤ · · · ≤ ∃2 ≤ ∃1 ≤ ∃0.

• +n : 2n→ 2 is the n-ary addition mod 2 (i.e., “XOR”). By default, + means +2.

• (?:) : 23→ 2 is the ternary conditional (“if-then-else”)

(x ? y : z) := (x ∧ y) ∨ (¬x ∧ z).

• → : 22→ 2 is the Boolean implication x→ y = ¬x ∨ y. Its de Morgan dual is δ(→) = ↚, the
variable transposition of x ̸→ y = x ∧ ¬y.

Definition 3.2. For f : 2n→ 2, define its upper/lower-bounded versions

⌈f⌉ : 21+n→ 2
(x0, x1, . . . ) 7→ x0 ∧ f(x1, . . . ),

⌊f⌋ : 21+n→ 2
(x0, x1, . . . ) 7→ x0 ∨ f(x1, . . . ).

Examples include:

• ← = ⌊¬⌋ (where x← y := y→ x), and similarly ̸→ = ⌈¬⌉.
• ⌈→⌉ : 23→ 2 is thus given by ⌈→⌉(x, y, z) = ⌈⌊¬⌋⌉(x, z, y) = x ∧ (y→ z). Its de Morgan dual

is ⌊̸→⌋(x, y, z) = ⌊⌈¬⌉⌋(x, y, z) = x ∨ (y ∧ ¬z).

• ⌈∨⌉ : 23→ 2 is similarly given by ⌈∨⌉(x, y, z) = x ∧ (y ∨ z); dually, ⌊∧⌋(x, y, z) = x ∨ (y ∧ z).

• ⌈∨⌉ : 2ω→ 2 is similarly given by ⌈∨⌉(x0, x1, x2, . . . ) = x0 ∧ (x1 ∨ x2 ∨ · · · ).
• ⌈∧⌉ = ∧3 and ⌈∧⌉ =

∧
.

Notation 3.3. For a family of functions (fn : 2n→ 2)n of various arities n ≥ 1, when we write f<ν

as part of a set of functions, we mean that fn for each 1 ≤ n < ν is included. For instance,

⟨∨,
∧<ω1⟩ = ⟨∨, id,∧,∧3,∧4, . . . ,

∧⟩

consists of all functions built from binary joins and countable meets (which is also just ⟨∨,
∧⟩).

We use similar notation for sets of relations indexed over a cardinal (see below).

Definition 3.4. We define the following relations on 2 of various arities:

• ≤ ⊆ 22 is the usual linear order where 0 < 1. A function preserves ≤ iff it is monotone.

If f : 2k→ 2 is a function of arity k, or more generally a partial function, then we may also treat f
as the (1 + k)-ary relation given by its graph. Examples include:

• The constant 0 may be treated as the unary relation {0}. A function g preserves 0 iff g(⃗0) = 0.
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• ¬ : 21→ 2 is identified with the binary relation ̸=. A function g preserves ¬ iff it is self-dual,
i.e., δ(g) = g, i.e., whenever x⃗, y⃗ differ in every coordinate (so y⃗ = ¬x⃗), then g(x⃗) ̸= g(y⃗).

• + : 22→ 2 is identified with the ternary relation {(x, y, z) ∈ 23 | x + y + z = 0}. A function
preserves + iff it is a linear transformation (over Z/2Z).

• +3 : 23→ 2 is identified with the quaternary relation {(x, y, z, w) ∈ 24 | x + y + z + w = 0}. A
function preserves +3 iff it is an affine transformation.

• ∧ : 22 → 2 as a ternary relation is preserved by g : 2n → 2 iff g is a meet-semilattice
homomorphism, which means that g−1(1) ⊆ 2n is empty or a filter.

• The partial increasing join operation ↑∨ : 2ω→ 2, defined by

↑∨ x⃗ = y :⇐⇒ (x0 ≤ x1 ≤ · · · ) ∧
(∨

i

xi = y
)

,

as a 1 + ω = ω-ary relation is preserved by g : 2n→ 2, n ≤ ω, iff g is Scott-continuous, i.e.,
monotone and g−1(0) ⊆ 2n is closed under increasing joins, or equivalently closed in the Cantor
topology (see e.g., [GHK+03, III-1.6]). Similarly for decreasing meet ↓

∧
: 2ω→ 2.

• Similarly, the partial limit operation lim : 2ω→ 2 is preserved by g : 2ω→ 2 iff g is continuous.

Definition 3.5. For f : 2k → 2, we also have two k-ary relations, distinct from the graph of f ,
which we denote using the “probabilist’s event notation”

(f=0) := f−1(0) = {x⃗ ∈ 2k | f(x⃗) = 0}, (f=1) := f−1(1) = {x⃗ ∈ 2k | f(x⃗) = 1}.

Examples include:

• (
∧k=0) ⊆ 2k is the k-ary disjointness relation (k ≥ 1). A function g : 2n→ 2 preserves

∧k=0
iff g−1(1) ⊆ 2n does not contain k strings with bitwise meet 0⃗. If n ≤ k, then (by considering
the strings with exactly one 1) this is equivalent to g ≤ πi for some i < n.

• In particular,
∧1=0 yields the same unary relation as the constant 0.

• (lim=0) ⊆ 2ω is the set of eventually 0 sequences. A function g : 2n→ 2 for n ≤ ω preserves
lim=0 iff g vanishes on a neighborhood of 0⃗ ∈ 2n, i.e., g(⃗0) = 0 and g is continuous at 0⃗ ∈ 2n.

3.B Post’s lattice

Definition 3.6. We use the following names for certain clones on 2:

• A := Pol{+3} consists of the affine functions.

• D := Pol{¬} consists of the self-dual functions.

• M := Pol{≤} consists of the monotone functions.

• M� := Pol{ ↓
∧} and M� := Pol{ ↑∨} (note that these are contained in M, by definition of the

domains of the partial operations ↓
∧

, ↑
∨

: for example, x ≤ y ⇐⇒ ↓
∧

(y, x, x, . . . ) = x).

• T0,k := Pol{∧k=0} and T1,k := Pol{∨k=1}, where k is a positive cardinal.

• Tc := Tc,1 = Pol{c} consists of the functions preserving the constant c ∈ 2.
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• Tc,<κ :=
⋂

1≤k<κ Tc,k for a regular cardinal κ. Thus

Tc = Tc,1 ⊇ Tc,2 ⊇ Tc,3 ⊇ · · · ⊇ Tc,<ω ⊇ Tc,ω = Tc,<ω1 ⊇ Tc,ω1 ⊇ · · · .

• Lc := Pol{lim=c}. (Generalizations called Lc,k and Lc,k,t will be defined later in Section 4.D.)

• Λ := Pol{∧} and V := Pol{∨}; more generally, Λk := Pol{∧k} and Vk := Pol{∨k}.

For two (or more) clones X,Y in this list, we use the abbreviation

XY := X ∩ Y.

Thus for instance, AT0 = Pol{+3, 0} = Pol{+} consists of the linear functions.
Note that we use these symbols for the <∞-ary clones (see Notation 2.5), consisting of all

functions preserving said relations. We may restrict to functions of a certain arity by writing e.g.,
M<ω for the finitary monotone functions.

Theorem 3.7 (Post [Pos41]). The lattice Clo<ω(2) of finitary clones on 2 is countable, and consists
of precisely the finitary restrictions of the following clones:

• The “cube” of 8 clones formed from intersecting all combinations of the 3 clones M,T0,T1.

• The 8 infinite series, consisting of the ω + 1 clones T0,k, where k is one of 2, 3, . . . , <ω; the
intersections of these with M,T1, or both; and the de Morgan duals of these (consisting of
T1,k and their intersections with M and/or T0).

• The 8 clones consisting of Λ; its intersections with T0 and/or T1; and their de Morgan duals.

• The 11 subclones of A: A,AD,AT0,AT1,ADT0 = ADT1; and the clone ⟨¬, 0⟩ = ⟨¬, 1⟩ of
essentially unary functions and its subclones ⟨¬⟩, ⟨0, 1⟩, ⟨0⟩, ⟨1⟩, and the trivial clone ⟨∅⟩.

• The 3 subclones of D which are not subclones of A: D, DT0 = DT1, and DM.

The ordering between these clones, as well as generators for them, are depicted in Figure 1.1.

It follows from Corollary 2.22 that the task of analyzing Clo<ν(2) for higher cardinals ν > ω
largely reduces to analyzing the lattice Clo<ν

F (2) of <ν-ary clones restricting to F (Notation 2.23),
separately for each finitary clone F ∈ Clo<ω(2) given in Theorem 3.7, i.e., in Figure 1.1.

3.C The bounding and cross-sectioning operators

In this and the following subsections, we consider several operators O2→O2, turning functions on 2
into new functions. We will use these to show some global structural relationships between distinct
“regions” of (infinitary) Post’s lattice; see Figure 3.28.

First, recall the bounding operators f 7→ ⌈f⌉, ⌊f⌋ from Definition 3.2.

Remark 3.8. We have the following simple identities:

⌈f ◦ g⃗⌉ = ⌈f⌉ ◦ (π0, ⌈g⃗⌉), ⌊f ◦ g⃗⌋ = ⌊f⌋ ◦ (π0, ⌊g⃗⌋)

(where ⌈(g0, g1, . . . )⌉ := (⌈g0⌉, ⌈g1⌉, . . . ) and similarly for ⌊g⃗⌋). Also, clearly

⌈f⌉ ∈ ⟨f,∧⟩, ⌊f⌋ ∈ ⟨f,∨⟩.
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Lemma 3.9. For any regular cardinal ν and set of functions F ⊆ O<ν
2 , we have

⟨⌈⟨F ⟩<ν⌉⟩<ν = ⟨⌈F ⌉ ∪ {∧}⟩<ν , ⟨⌊⟨F ⟩<ν⌋⟩<ν = ⟨⌊F ⌋ ∪ {∨}⟩<ν

(where ⌈F ⌉ := {⌈f⌉ | f ∈ F}).
Proof. We only prove the first identity; the second is dual.
⊇ follows easily from ∧ = ⌈id⌉ ∈ ⌈⟨F ⟩<ν⌉.
⊆ follows from ⌈⟨F ⟩<ν⌉ ⊆ ⟨⌈F ⌉ ∪ {∧}⟩<ν , which follows from the fact that the preimage

⌈−⌉−1(⟨⌈F ⌉ ∪ {∧}⟩<ν) is closed under ◦ and contains all projections, by the above remark.

Lemma 3.10. For any regular cardinal ν and <ν-ary clone ∧ ∈ F ⊆ O<ν
2 , we have

F ∩ T0,<ν = ⟨⌈F ⌉⟩<ν .

Proof. ⊇ follows from Remark 3.8. Conversely, for f ∈ F ∩ T0,<ν , we have f ≤ πi for some i (recall
Definition 3.6), whence f(x⃗) = ⌈f⌉(xi, x⃗) is in ⟨⌈F ⌉⟩.

We now consider an operator that forms a partial inverse to ⌈−⌉, ⌊−⌋.
Definition 3.11. For f : 21+n→ 2 and a constant c ∈ 2, define the cross-section fc : 2n→ 2 by

fc(x⃗) := f(c, x⃗).

These satisfy the identities

cn = (π1+n
0 )c, πn

i = (π1+n
1+i )c, fc ◦ g⃗c = (f ◦ (π0, g⃗))c, f = (f ◦ (π1+i)i)c.

Lemma 3.12. For a regular cardinal ν, <ν-ary clone F ⊆ O<ν
2 , and c ∈ 2,

⟨F ∪ {c}⟩<ν = {fc | f ∈ F≥2}.

(Here, following Convention 2.24, c on the left denotes a positive-arity constant function.)

Proof. ⊇ is obvious; ⊆ follows from the above identities which ensure that the right-hand side is a
clone containing F ∪ {c}.

Remark 3.13. The above operators are related via

⌊f⌋0 = f, ⌊f0⌋(x0, x1, . . . ) = x0 ∨ f(0, x1, . . . ) = x0 ∨ f(x0, x1, . . . ),
⌈f⌉1 = f, ⌈f1⌉(x0, x1, . . . ) = x0 ∧ f(1, x1, . . . ) = x0 ∧ f(x0, x1, . . . ).

Proposition 3.14. Let ν be a regular cardinal. The composite of the modularity adjunctions (2.2)
between the three intervals

[⟨∧⟩<ν ,O<ν
2 ] [⟨∧, 1⟩<ν ,O<ν

2 ]

[⟨∧⟩<ν ,T<ν
0,<ν ]

F 7→⟨F∪{1}⟩<ν={f1|f∈F ≥2}

⊣
G↧

G∩T0,<ν=⟨⌈G⌉⟩<ν

⊣

≅

is an isomorphism. (Here the ↪→ arrows are inclusions.)
Moreover , the composite F 7→ ⟨F ∪{1}⟩<ν 7→ ⟨F ∪{1}⟩<ν ∩T0,<ν : [⟨∧⟩<ν ,O<ν

2 ]→ [⟨∧⟩<ν ,T<ν
0,<ν ]

is equal to G 7→ G ∩ T0,<ν , which thus has a further right adjoint F 7→ ⟨F ∪ {1}⟩<ν .
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Proof. We prove the last statement first. For a clone ∧ ∈ F ⊆ O<ν
2 , we have ⟨F ∪ {1}⟩<ν ∩ T0,<ν =

⟨⌈{f1 | f ∈ F≥2}⌉⟩<ν (by Lemmas 3.10 and 3.12), which by the preceding remark is contained in
F ∩ T0,<ν (since ⌈f1⌉ ∈ ⟨f,∧⟩ ⊆ F ); the other inclusion is obvious.

Now to finish proving that [⟨∧⟩<ν ,T<ν
0,<ν ] ≅ [⟨∧, 1⟩<ν ,O<ν

2 ], it remains to show that for G in the
latter interval, we have G ⊆ ⟨⌈G⌉ ∪ {1}⟩<ν , which again follows from the preceding remark.

Proposition 3.14 shows that, analogously to Corollary 2.22, the entire interval [⟨∧⟩<ν ,O<ν
2 ]

may be regarded as a “bundle” over the intervals [⟨∧⟩<ν ,T<ν
0,<ν ] ≅ [⟨∧, 1⟩<ν ,O<ν

2 ], which contain
respectively the least and greatest elements in each fiber. This is depicted in Figure 3.28(a) for
ν = ω: the bottommost and topmost shaded intervals are isomorphic, and everything between them
is between two clones corresponding to each other in the bottom interval and the top interval.

3.D The downward-closure of a clone

We now extend Proposition 3.14 to show that in fact, “most” of [⟨∧⟩<ν ,O<ν
2 ] decomposes as a product

of two intervals, i.e., “most” clones containing ∧ are determined by two “orthogonal projections”,
one onto [⟨∧⟩<ν ,T<ν

0,<ν ] ≅ [⟨∧, 1⟩<ν ,O<ν
2 ] as in 3.14, and the other given as follows.

Definition 3.15. For a class of functions G ⊆ O2, let ↓G denote its pointwise downward-closure:

↓G := {f : 2n→ 2 | ∃g ∈ Gn (f ≤ g)}.

For example:

• ↓⟨∅⟩<ν = {f : 2n→ 2 | n < ν, ∃i < n (f ≤ πi)} = T<ν
0,<ν .

• ↓⟨MT0T
<ω
1 ⟩<ω1 = L<ω1

0 . (Recall Definition 3.6. Given f ∈ Lω
0 , i.e., f : 2ω→ 2 which is 0 on a

neighborhood of 0⃗ ∈ 2ω, which we may assume to be clopen, downward-closed and ⊊ 2ω, the
indicator function g of the complement of that neighborhood is in ⟨MT0T

<ω
1 ⟩.)

Lemma 3.16. If G ⊆M is a clone, then so is ↓G.

Proof. Let f ≤ g ∈ Gn, and fi ≤ gi ∈ Gm for each i < n. Then f ◦ f⃗ ≤ g ◦ f⃗ ≤ g ◦ g⃗ ∈ Gm.

Remark 3.17. Clearly G ⊆ F ⊆ ↓G =⇒ ↓F = ↓G. Thus if G ⊆ O2 is such that ↓G is a clone,
then so is ↓F for every F ∈ [G, ↓G]. In particular, if F ⊆ ↓(F ∩M), then ↓F is a clone.

The following generalizes Lemma 3.10, which is the case G = ⟨∅⟩<ν :

Lemma 3.18. For any regular cardinal ν, G ⊆ O<ν
2 , and <ν-ary clone G ∪ {∧} ⊆ F ⊆ O<ν

2 ,

⟨F ∩ ↓G⟩<ν = ⟨⌈F ⌉ ∪G⟩<ν .

Proof. ⊇ follows from Remark 3.8. Conversely, for f ∈ F ∩ ↓G, we have f ≤ g for some g ∈ G,
whence f(x⃗) = g(x⃗) ∧ f(x⃗) = ⌈f⌉(g(x⃗), x⃗) is in ⟨⌈F ⌉⟩.

Corollary 3.19. For any regular cardinal ν and G ⊆ O<ν
2 ,

⟨↓G⟩<ν = ⟨T<ν
0,<ν ∪G⟩<ν .

Proof. Take F = O<ν
2 above.
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Corollary 3.20. For any regular cardinal ν and <ν-ary clone ∧ ∈ G ⊆ O<ν
2 ,

⟨G ∪ {1}⟩<ν ∩ ↓G = G.

This says that G is “downward-closed within its fiber from Proposition 3.14”.

Proof. Take F = ⟨G ∪ {1}⟩<ν above, noting that ⟨⌈⟨G ∪ {1}⟩<ν⌉⟩<ν = G ∩ T0,<ν by 3.14.

Summarizing the preceding results, we have:

Proposition 3.21. Let ν be a regular cardinal. We have an adjunction

(⟨F∪{1}⟩<ν ,⟨↓F ⟩<ν)

(F∩T0,<ν ,⟨↓F ⟩<ν) [⟨∧⟩<ν ,T<ν
0,<ν ]× [T<ν

0,<ν ,O<ν
2 ] [⟨∧, 1⟩<ν ,O<ν

2 ]× [T<ν
0,<ν ,O<ν

2 ]

∋

(G,H)

F [⟨∧⟩<ν ,O<ν
2 ] G∩H

∈

∈ ≅

⊣

∈ ∋

which restricts to an order-embedding on those F ∈ [⟨∧⟩<ν ,O<ν
2 ] such that ↓F is a clone. This

includes all monotone F , and more generally, all F ∈ [G, ↓G] for some subclone G ⊆M<ν .

In other words, every such clone F is determined by its two “projections” or “coordinates”
F ∩ T0,<ν and ↓F , in the intervals [⟨∧⟩<ν ,T<ν

0,<ν ] and [T<ν
0,<ν ,O<ν

2 ]. This gives a detailed analysis of
the “tube” on the left side of Post’s lattice 1.1 and its <ν-ary version; see Figure 3.28(b).

Some particular consequences of Proposition 3.21 are:

Corollary 3.22. For any regular cardinal ν and <ν-ary clones ∧ ∈ G ⊆ MT<ν
0,<ν and G ⊆ H ⊆

T<ν
0,<ν , the modularity adjunction

[G, ⟨G ∪ {1}⟩<ν ] ⇄ [H, ⟨H ∪ {1}⟩<ν ]
F 7→ ⟨F ∪H⟩<ν

exhibits the left interval as a retract of the right.

This says that the “vertical fibers” of the image of the embedding in 3.21 (i.e., the fibers of the
bundle 3.14) are “increasing as the x-coordinate (in [⟨∧⟩<ν ,T<ν

0,<ν ]) increases”.

Corollary 3.23. Let ν be a regular cardinal, ∧ ∈ H ⊆ M<ν be a <ν-ary clone. Then we have
modularity isomorphisms between the intervals

[H ∩ T0,<ν ,T<ν
0,<ν ] ≅ [H, ↓H] ≅ [⟨H ∪ {1}⟩<ν ,O<ν

2 ]
F 7→ ⟨F ∪H⟩<ν 7→ ⟨F ∪H ∪ {1}⟩<ν = ⟨F ∪ {1}⟩<ν

G ∩ T0,<ν = ⟨⌈G⌉⟩<ν ←[ G ∩ ↓H ←[ G.
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This says that the “horizontal slices” of 3.21, with fixed “y-coordinate ↓H ∈ [T<ν
0,<ν ,O<ν

2 ]”, are
isomorphic to the top and bottom slices between which they are sandwiched. For example, taking
H = ⟨MT0T

<ω
1 ⟩<ω1 = ⟨∧,∨⟩ω1 , so that ↓H = L<ω1

0 (see Definition 3.15), we get

[⟨⌈∨⌉⟩<ω1 ,T<ω1
0,ω ] ≅ [⟨∧,∨⟩<ω1 ,L<ω1

0 ] ≅ [⟨∧,∨, 1⟩<ω1 ,O<ω1
2 ](3.24)

F 7→ ⟨F ∪ {∨}⟩<ω1 7→ ⟨F ∪ {∨, 1}⟩<ω1 = ⟨F ∪ {1}⟩<ω1

G ∩ T0,ω = ⟨⌈G⌉⟩<ω1 ←[ G ∩ L0 ←[ G.

When instead H = MT0,2T
<ω
1 , this yields the slice depicted in Figure 3.28(a) and (b).

Remark 3.25. When ν = ω, by an inspection of finitary Post’s lattice 1.1, we see that Proposi-
tion 3.21 in fact applies to all finitary clones F ∋ ∧, i.e., ↓F = ⟨F ∪ T<ω

0,<ω⟩<ω is always a clone. It
does not seem possible to prove this in full generality for ν > ω. However, in the context of <ω1-ary
Borel clones, it turns out that Proposition 3.21 does always apply; see Corollary 4.37.

In determining for which clones F ∋ ∧ is ↓F also a clone, the following notion can be useful:
Definition 3.26. For a function f : 2n→ 2, let ↑f : 2n→ 2 denote the indicator function of the
upward-closure ↑f−1(1) of f−1(1) ⊆ 2n, namely

(↑f)(x⃗) :=
∨

y⃗≤x⃗

f(y⃗).

For a class of functions F ⊆ O2, let ↑[F ] := {↑f | f ∈ F}. (Note that this is not dual to the
pointwise downward-closure ↓G of a set of functions from Definition 3.15, which refers to the
pointwise ordering on functions 2n→ 2, whereas this refers to the bitwise ordering on 2n.)

The upward-closure ↑f is the least monotone function ≥ f . It follows that for any F ⊆ O2,

F ∩M ⊆ ↑[F ] ⊆M, F ∩M = F ∩ ↑[F ], F ⊆ ↓↑[F ].(3.27)

Thus if ↑[F ] ⊆ F , then G := ↑[F ] ⊆ M obeys G ⊆ F ⊆ ↓G, and so ↓F = ↓G is a clone. (It is not
always true that ↑[F ] ⊆ F for a clone F ; see Remark 4.31.)

3.E The self-dualizing operator

Next, we consider a different region of Post’s lattice on which the cross-sectioning operators yield
an isomorphism: the self-dual functions. (This is the same approach used to classify the self-dual
clones in the original finitary Post’s lattice in e.g., [Lau06, §3.2.3].)
Definition 3.29. For f : 2n→ 2, define β(f) : 21+n→ 2 by

β(f)(x0, x⃗) := (x0 ? δ(f)(x⃗) : f(x⃗)).

(Recall from Definition 3.1 that ?: denotes the ternary conditional.)
Remark 3.30. It is easily seen that for any cardinal n, including n = 0, β is a bijection

22n D1+n 221+nβ≅ ⊆

f0← [f

with retraction (−)0 : 221+n ↠ 22n (the cross-section from Definition 3.11), i.e., for any f : 21+n→ 2,

f ∈ D1+n ⇐⇒ f ∈ im(β) ⇐⇒ f = β(f0).
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=⟨∨,0⟩

=Pol{¬}=⟨∃3
2,¬⟩

(a) Proposition 3.14

O2

T0,<ν

⟨∧,1⟩

⟨∧⟩

(b) Proposition 3.21

=⟨∨,0⟩

=Pol{¬}=⟨∃3
2,¬⟩

(c) Proposition 3.31

Figure 3.28: Modularity isomorphisms/retractions between various subintervals of Post’s lattice.

Proposition 3.31. For any regular cardinal ν, we have an order-isomorphism

[⟨∅⟩<ν ,D<ν ] ≅ {G ∈ Clo<ν(2) | 0 ∈ G1, β(G) ⊆ G} ⊆ [⟨0⟩<ν ,O<ν
2 ]

F 7→ ⟨F ∪ {0}⟩<ν = {f0 | f ∈ F≥2}
G ∩ D = ⟨β(G)⟩<ν ←[ G.

Proof. By Remark 3.30, F 7→ F0 := {f0 | f ∈ F} is a bijection between all subsets of D and arbitrary
sets of functions on 2, including nullary functions f0 which occur when f ∈ F is unary. But for a
clone F and unary f ∈ F , the unary constant function x 7→ f(0) = f0 also appears as (f ◦π2

0)0; thus
F0 is completely determined by the positive-arity functions F≥1

0 ⊆ F0, namely a nullary function
is in F0 iff the corresponding unary constant function is in F≥1

0 . Hence, F 7→ ⟨F ∪ {0}⟩<ν = F≥1
0

(by Lemma 3.12) remains injective on clones F , with inverse (by Remark 3.30) taking G = F≥1
0

to β(F0), which can be obtained from β(G) = β(F≥1
0 ) by adding a unary function f whenever

the corresponding binary function f ′(x, y) := f(x) is in β(G); since f(x) = f ′(x, x), this means
β(F0) = ⟨β(G)⟩<ν . This proves that F 7→ ⟨F ∪ {0}⟩<ν is injective, with inverse on its image given
by G 7→ ⟨β(G)⟩<ν , which must hence equal the right adjoint G 7→ G ∩ D (recall again (2.2)).

For a clone of the form G = ⟨F ∪{0}⟩<ν , we clearly have 0 ∈ G1 and β(G) ⊆ ⟨β(G)⟩<ν = F ⊆ G.
Conversely, if G ∈ Clo<ν(2) satisfies these two conditions, then clearly ⟨⟨β(G)⟩<ν ∪ {0}⟩<ν ⊆ G, and
again by Remark 3.30 and Lemma 3.12, G = G≥1 = β(G)≥1

0 ⊆ (⟨β(G)⟩<ν)≥1
0 = ⟨⟨β(G)⟩<ν ∪ {0}⟩<ν .

This shows that the image of the isomorphism is as claimed.

Thus, the classification of self-dual clones reduces to the classification of clones containing
0 and closed under the β operator. See Figure 3.28(c), which should probably be viewed only
impressionistically as it is rather difficult to tell at a glance which clones are closed under β. In the
finitary Post’s lattice 1.1, the three non-affine clones containing 0 and closed under β are

⟨D<ω ∪ {0}⟩<ω = O<ω
2 , ⟨DT<ω

0 ∪ {0}⟩<ω = T<ω
0 , ⟨DM<ω ∪ {0}⟩<ω = MT<ω

0,2 .(3.32)

The following lemma can simplify checking closure of a clone under β in general:
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Lemma 3.33. For any set of functions G ⊆ O<ν
2 , we have

β(⟨G⟩<ν) ⊆ ⟨β(G)⟩<ν .

Thus, β(G) ⊆ ⟨G⟩<ν iff β(⟨G⟩<ν) ⊆ ⟨G⟩<ν .

Proof. By Remark 3.30, β−1(⟨β(G)⟩<ν) = (⟨β(G)⟩<ν)0 ⊇ β(G)0 = G, whence by Lemma 3.12,
β−1(⟨β(G)⟩<ν)≥1 = (⟨β(G)⟩<ν)≥1

0 = ⟨⟨β(G)⟩<ν ∪ {0}⟩<ν is a clone containing G.

4 Borel clones on 2
Definition 4.1. Recall that a Borel set A ⊆ 2n, where n ≤ ω, is a set obtained as a countable
Boolean combination of the subbasic clopen sets π−1

i (1) for each i < n. A Borel function f : 2n→2
is one such that f−1(0), f−1(1) are Borel sets, i.e., f is the indicator function of a Borel set, i.e., f
is obtained by applying

∧ω,
∨ω,¬ pointwise to the πi. Thus

OB
2 := ⟨∧,

∨
,¬⟩<ω1 ⊆ O<ω1

2

is the <ω1-ary clone of all Borel functions of countable arity on 2.

We are interested in classifying subclones of OB
2 , which we call Borel clones on 2. As such, we

adopt the following

Notation 4.2. We will treat the superscript B for “Borel” as if it were a class of arities, intermediate
between finite (<ω) and countable (<ω1). Thus, in analogy with Notation 2.5, for a class of functions
F ⊆ O2, we write

F B := F ∩OB
2

for the Borel functions in F . The following are some example uses of this notation:

• MB ⊆ OB
2 denotes the clone of monotone Borel functions 2n→ 2, n ≤ ω (recall Definition 3.6).

• If M ⊆ R2 is a class of relations on 2, then PolB(M) = Pol(M) ∩ OB
2 = Pol<ω1(M) ∩ OB

2
consists of all Borel polymorphisms of M.

• If F ⊆ OB
2 is a class of Borel functions, then ⟨F ⟩B = ⟨F ⟩ ∩ OB

2 = ⟨F ⟩<ω1 , while ⟨F ⟩B =
⟨F ⟩ ∩OB

2 consists of the Borel functions which are pointwise limits of functions in ⟨F ⟩B. Note
that if F = Pol<ω(M) consists of all finitary polymorphisms of a class of relations, then
⟨F ⟩B = PolB(Inv<ω(Pol<ω(M))) = PolB(M) (by Corollary 2.22); e.g., ⟨M<ω⟩B = MB.

We also write
CloB(2) := [⟨∅⟩B,OB

2 ] ⊆ Clo<ω1(2)

for the sublattice of all clones of Borel functions. Thus, the “bundle” of Corollary 2.22 specializes to

(4.3)

CloB(2)

Clo<ω(2)

(−)∩O<ω
2⟨−⟩B ⊣ PolB ◦ Inv<ω=⟨−⟩B⊣
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As in Notation 2.23, put
CloB

F (2) := [⟨F ⟩B, ⟨F ⟩B] ⊆ CloB(2)
for the fiber of this bundle over each finitary clone F ∈ Clo<ω(2) in Post’s lattice.

In the rest of this section, we will describe the structure of CloB
F (2) for F in various “regions” of

Post’s lattice Clo<ω(2) (see Figure 1.5).
We begin by dispensing with the simplest case: the affine (over Z/2Z) functions. The following

classical result is a special case of general “automatic continuity” results for well-behaved topological
groups, and can be proved using either Haar measure (as the Steinhaus–Weil theorem) or Baire
category (as Pettis’s theorem). See e.g., [Kec95, 9.9], [Ros09].
Theorem 4.4. Let A ⊆ 2ω be a Borel subgroup under addition mod 2. If A has countable index,
then A is clopen.
Corollary 4.5. AB = ⟨A<ω⟩B, i.e., every affine Borel map f : 2n→ 2 for n ≤ ω is continuous.
Proof. Either f−1(0) or f−1(1) is an index ≤ 2 Borel subgroup of 2n.

Corollary 4.6. For every finitary clone F ⊆ A<ω, there is a unique Borel clone restricting to F ,
namely ⟨F ⟩B = ⟨F ⟩B ∈ CloB

F (2).
This is illustrated in the large shaded region near the bottom of Figure 1.5.

4.A The top cube

We now turn to the Borel clones lying over one of the 8 finitary cones in the “top cube” of Post’s
lattice 1.1, between MT0T

<ω
1 and O<ω

2 . We will give a complete classification of the corresponding
Borel clones, of which there are only finitely many (see Figure 1.5). Our main tool will be the
modularity isomorphisms from Corollary 3.23.

The following lemma consists of variations of the well-known fact that countable supremum is
the “simplest” discontinuous function (the base case of Wadge’s lemma; see e.g., [Kec95, 21.16]).
Lemma 4.7. Let f : 2ω→ 2.

(a) If f is discontinuous, then
∨ ∈ ⟨{f} ∪ T<ω

1,<ω⟩.
(b) If f ∈ T0 \ L0, then

∨ ∈ ⟨{f} ∪ T0T
<ω
1,<ω⟩.

(c) If f ∈M \M�, then
∨ ∈ ⟨{f} ∪MT<ω

1,<ω⟩.
(d) If f ∈MT0 \ L0, then

∨ ∈ ⟨{f} ∪MT0T
<ω
1,<ω⟩.

Proof. (a) Suppose f is discontinuous at x⃗∞ ∈ 2ω. Then there is a sequence of strings x⃗0, x⃗1, . . . ∈ 2ω

converging to x⃗∞ such that f(x⃗0) = f(x⃗1) = · · · ̸= f(x⃗∞). Define

g : 2ω −→ 2ω

1 · · · 7−→ 1⃗
01 · · · 7−→ x⃗0

001 · · · 7−→ x⃗1
...

0⃗ 7−→ x⃗∞
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OB
2 = ⟨∧,

∨
, 0, 1,¬⟩

⟨O<ω
2 ⟩ = ⟨∧,∨, 0, 1,¬⟩

TB
0 = ⟨∨, ̸→⟩

L0=⟨∧,∨, ̸→⟩

⟨T<ω
0 ⟩ = ⟨∨, ̸→⟩

G∩L0←[G
=⟨⌈G⌉∪{∨

}⟩

G∩T0←[G
=⟨⌈G⌉∪{∨}⟩

Figure 4.9: Borel clones with finitary restrictions T<ω
0 and O<ω

2 , respectively, along with modularity
isomorphisms from Corollary 3.23 used to deduce the former from the latter. See also Figure 1.5. (Here, and
in the below figures, all clones are <ω1-ary and restricted to Borel functions, unless otherwise indicated.)

where each tail “· · ·” may be an arbitrary string. This is evidently a continuous function, such that
each coordinate gi := πi ◦ g ≥ π0 : 2ω→ 2, hence is in ⟨T<ω

1,<ω⟩; thus f ◦ g = f ◦ (gi)i ∈ ⟨{f} ∪T<ω
1,<ω⟩.

If f(x⃗∞) = 0, then f ◦ g agrees with
∨

: 2ω → 2 on all strings of the form 0 · · ·, whence
∨

=
π0 ∨ (f ◦ g) ∈ ⟨{f} ∪ T<ω

1,<ω⟩. Otherwise,
∨

= π0 ∨ ¬(f ◦ g) = (f ◦ g)→ π0 ∈ ⟨{f} ∪ T<ω
1,<ω⟩.

(b) Let x⃗0, x⃗1, . . . ∈ f−1(1) converge to x⃗∞ := 0⃗ ∈ f−1(0). Then the function g defined above
preserves 0 coordinatewise, and we know f(x⃗∞) = 0, whence

∨
= π0 ∨ (f ◦ g) ∈ ⟨{f} ∪ T0T

<ω
1,<ω⟩.

(c) Let x⃗0 ≥ x⃗1 ≥ · · · converge to x⃗∞ ∈ 2ω with f(x⃗0) = f(x⃗1) = · · · > f(x⃗∞). Then g defined
above is monotone, and f(x⃗∞) = 0, whence

∨
= π0 ∨ (f ◦ g) ∈ ⟨{f} ∪MT<ω

1,<ω⟩.
(d) Let x⃗0, x⃗1, . . . ∈ f−1(1) converge to x⃗∞ := 0⃗ ∈ f−1(0). Then x⃗′i :=

∨
j≥i x⃗j converge

monotonically to 0⃗, and f(x⃗′i) ≥ f(x⃗i) = 1. Combine the arguments of (b) and (c).

Corollary 4.8. There are precisely 2 Borel clones on 2 restricting to O<ω
2 (see Figure 4.9):

• OB
2 = ⟨∨,¬⟩B = ⟨∧,

∨
, 0, 1,¬⟩B.

• ⟨O<ω
2 ⟩B = PolB{lim} = ⟨∨,¬⟩B = ⟨∧,∨, 0, 1,¬⟩B.

Proof. If ⟨O<ω
2 ⟩B ̸= F ∈ CloB

O<ω
2

(2), then F contains a discontinuous function, hence contains
∨

by
Lemma 4.7(a), hence contains all Borel functions since it contains ¬ ∈ O<ω

2 .

Theorem 4.10. There are precisely 3 Borel clones on 2 restricting to T<ω
0 (see Figure 4.9):

• TB
0 = PolB{0} = ⟨∨, ̸→⟩B = ⟨∧,

∨
, 0, ̸→⟩B.

• LB
0 = PolB{lim=0} = ⟨∧,∨, ̸→⟩B = ⟨⌈∨⌉,∨, ̸→⟩B = ⟨∧, ⌈∨⌉,∨, 0, ̸→⟩B.

• ⟨T<ω
0 ⟩B = PolB{lim, 0} = ⟨∨, ̸→⟩B = ⟨∧,∨, 0, ̸→⟩B.

Proof. By Lemma 4.7(b), the greatest clone in CloB
T<ω

0
(2) below the maximum TB

0 is LB
0 (which is

indeed below the maximum since
∨

: 2ω→ 2 preserves 0 but is discontinuous at 0⃗).
By Corollary 3.23 with H = ⟨MT0T

<ω
1 ⟩<ω1 = ⟨∧,∨⟩B and ↓H = L<ω1

0 as in (3.24), the clones
between ⟨T<ω

0 ⟩B and LB
0 are in order-preserving bijection, via F 7→ ⟨F ∪ {1}⟩B, with the clones in

CloB
O<ω

2
(2) (since ⟨T<ω

0 ∪ {1}⟩B = ⟨∨, ̸→, 1⟩B = ⟨O<ω
2 ⟩B and ⟨LB

0 ∪ {1}⟩B ⊇ ⟨
∧

, ̸→, 1⟩B = OB
2 ). The

inverse of this bijection takes G ∈ CloB
O<ω

2
(2) to G∩L0, which can also be obtained (see again (3.24))
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by first restricting all the way to G ∩ T0,ω = ⟨⌈G⌉⟩B ∋ ∧, then adding ∨ to yield ⟨⌈G⌉ ∪ {∨}⟩B.
Applying this to the two clones in Corollary 4.8 yields

OB
2 ∩ L0 = PolB{lim=0} = ⟨⌈∨⌉, ⌈¬⌉,∨⟩B = ⟨⌈∨⌉, ̸→,∨⟩B (by Lemma 3.9)

= ⟨⌈∧⌉, ⌈¬⌉,∨⟩B = ⟨∧, ̸→,∨⟩B (by Lemma 3.9),
⟨O<ω

2 ⟩B ∩ L0 = PolB{lim, 0} = ⟨T<ω
0 ⟩B (by Remark 2.13).

Thus, these are the two clones in CloB
T<ω

0
(2) below the maximum.

Finally, to see that the maximum TB
0 is generated by

∨
, ̸→, we can again apply Corollary 3.23

but with H = ⟨∧,
∨⟩B, which clearly bounds all T<ω1

0 functions, to get that the clones between
⟨∨, ̸→⟩B and TB

0 correspond to the clones above ⟨∨, ̸→, 1⟩B = OB
2 , whence ⟨∨, ̸→⟩B = TB

0 .

This proof technique is illustrated in Figure 4.9: we partition the lattice CloB
T<ω

0
(2) into two

pieces, each of which is isomorphic by Corollary 3.23 to a part of the previously known lattice
CloB

O<ω
2

(2). We now repeatedly apply this technique to the remaining clones in the top cube.

Theorem 4.11. There are precisely 5 Borel clones on 2 restricting to T0T
<ω
1 (see Figure 4.12):

• T0TB
1 = PolB{0, 1} = ⟨∧,

∨
, ?:⟩B.

• T0LB
1 = PolB{0, lim=1} = ⟨∨, ?:⟩B.

• L0TB
1 = PolB{lim=0, 1} = ⟨∧, ?:⟩B.

• L0LB
1 = PolB{lim=0, lim=1} = ⟨⌊∧⌋, ?:⟩B = ⟨⌈∨⌉, ?:⟩B.

• ⟨T0T
<ω
1 ⟩B = PolB{lim, 0, 1} = ⟨?:⟩B.

Proof. By Lemma 4.7(b), each clone in CloB
T0T

<ω
1

(2) either is contained in L0T1 or else contains
⟨{∨} ∪ T0T

<ω
1 ⟩B = ⟨∨, ?:⟩B (and these are mutually exclusive, again since

∨
is discontinuous at 0⃗).

As in the proof of Theorem 4.10, by Corollary 3.23, the clones below L0T1 may be obtained by
applying G 7→ G ∩ L0 = ⟨⌈G⌉ ∪ {∨}⟩B to each of the clones in CloB

T<ω
1

(2), which are the de Morgan
duals of the clones in Theorem 4.10; these are easily seen to map to the last 3 of the 5 clones listed
(see Figure 4.12; recall from Post’s lattice 1.1 that ⟨?:⟩ = ⟨∨, ⌈→⌉⟩ = ⟨∧, ⌊̸→⌋⟩).

Again by Corollary 3.23 but with H = ⟨∧,
∨⟩B, clones above ⟨∨, ?:⟩B and below T0TB

1 (which
are all bounded by

∨
) are obtained by applying G 7→ G ∩ T0 = ⟨⌈G⌉ ∪ {∨}⟩B to each of the clones

in CloB
T<ω

1
(2) containing

∨
; this yields the first 2 listed clones.

In order to apply the same technique to subclones of MB, we need the following standard facts.
The next lemma is well-known in topological lattice theory; see e.g., [Joh82, VII 1.7].

Lemma 4.13. A monotone function f : 2ω→ 2 is continuous iff it preserves both increasing limits
(=joins) and decreasing limits (=meets). In other words, ⟨M<ω⟩<ω1 = Pol<ω1{≤, lim} = M�M

<ω1� .

Proof. For a sequence of bits x0, x1, . . . , x∞ ∈ 2, we have

lim
n→∞

xn = x∞ ⇐⇒ ∃(yn)n∈N, (zn)n∈N ∈ 2ω
(∧

n

(yn ≤ xn ≤ zn) ∧
(
↑∨

n

yn = x∞ = ↓
∧

n

zn

))

which is a positive-primitive definition (recall Lemma 2.18) of lim from ≤, ↑
∨

, ↓
∧

.
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G∩L0←[G
=⟨⌈G⌉∪{∨

}⟩

G∩T0←[G
=⟨⌈G⌉∪{∨}⟩

TB
1 = ⟨∧,→⟩

L1=⟨∨,∧,→⟩

⟨T<ω
1 ⟩ = ⟨∧,→⟩

T0TB
1 = ⟨∧,

∨
, ?:⟩

L0T1=⟨∧,?:⟩ T0L1=⟨∨,?:⟩

L0L1=⟨⌊∧⌋,⌈∨⌉,?:⟩

⟨T0T
<ω
1 ⟩ = ⟨?:⟩

Figure 4.12: Borel clones restricting to T0T<ω
1 (left), obtained by applying modularity isomorphisms

from 3.23 to the Borel clones restricting to T<ω
1 (right), which are isomorphic to CloB

T<ω
0

(2) from Figure 4.9.

Recall from Definition 3.4 that g : 2n→ 2, where n ≤ ω, preserves ↑
∨

iff it is Scott-continuous,
i.e., g is the indicator function of a Scott-open set g−1(1) ⊆ 2n, meaning g−1(1) is upward-closed
and its complement is closed under directed joins. The following is again well-known in the theory
of topological posets; see e.g., [Joh82, VII 4.8].

Lemma 4.14. M<ω1� = ⟨∧,
∨

, 0, 1⟩<ω1 .

Proof. Let n ≤ ω. We are to show that if U ⊆ 2n is Scott-open, then its indicator function is
a join of finite meets of projections, i.e., it is open in the product topology on 2n where 2 has
the Sierpinski topology {∅, {1}, 2}. We identify 2n with the powerset P(n). For every a ∈ U ,
since a is a directed union of finite subsets, there is a finite b ⊆ a such that b ∈ U , whence
a ∈ [b, n] := {a ∈ P(n) | b ⊆ a} ⊆ U . Thus U is a union of such [b, n], each of which is a finite
intersection of subbasic opens [b, n] =

⋂
i∈b{a ∈ P(n) | i ∈ a} in the product topology.

Corollary 4.15. There are precisely 4 Borel clones on 2 restricting to M<ω (see Figure 4.16):

• MB = PolB{≤} = ⟨∧,
∨

, 0, 1⟩B.

• MB� = PolB{ ↑∨} = ⟨∧,
∨

, 0, 1⟩B.

• MB� = PolB{ ↓
∧} = ⟨∧,∨, 0, 1⟩B.

• ⟨M<ω⟩B = PolB{lim,≤} = ⟨∧,∨, 0, 1⟩B.

Proof. MB = ⟨∧,
∨

, 0, 1⟩B by Dyck’s monotone version of the Lusin separation theorem for analytic
sets; see [Kec95, 28.12], [Dou88, §5]. The generators for MB� ,MB� are by Lemma 4.14 and its dual;
and ⟨M<ω⟩B = ⟨∧,∨, 0, 1⟩B from Post’s lattice 1.1. By Lemma 4.7(c), each clone in CloB

M<ω (2) either
is contained in MB� or contains

∨
, hence ⟨∧,

∨
, 0, 1⟩B = MB� ; dually, it either is contained in MB� or

contains MB� . If it contains both MB� ,MB� , then it contains ⟨∧,
∨

, 0, 1⟩B = MB. If it is contained in
both, then it is contained in ⟨M<ω⟩B by Lemma 4.13.

Lemma 4.17. M�T
<ω1
0 ⊆ L0.
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G∩L0←[G
=⟨⌈G⌉∪{∨

}⟩

G∩T0← [G
=⟨⌈G⌉∪{∨}⟩

MB = ⟨∧,
∨

, 0, 1⟩

M�=⟨∧,∨,0,1⟩ M�=⟨∧,
∨

,0,1⟩

⟨M<ω⟩ = ⟨∧,∨, 0, 1⟩

MTB
0 = ⟨∧,

∨
, 0⟩

ML0=⟨∧,⌈∨⌉,∨,0⟩ M�T0=⟨∧,
∨

,0⟩

M�L0=⟨⌈∨⌉,∨,0⟩M�T0=⟨∧,∨,0⟩

⟨MT<ω
0 ⟩ = ⟨∧,∨, 0⟩

Figure 4.16: Borel clones restricting to MT<ω
0 and M<ω, along with modularity isomorphisms from 3.23

used to deduce the former from the latter.

Proof. This is easily seen directly, or via the dual of Lemma 4.14, or the positive-primitive definition

lim
n→∞

xn = 0 ⇐⇒ ∃(yn)n

(∧

n

(xn ≤ yn) ∧
(
↓
∧

n

yn = 0
))

.

Theorem 4.18. There are precisely 6 Borel clones on 2 restricting to MT<ω
0 (see Figure 4.16):

• MTB
0 = PolB{≤, 0} = ⟨∧,

∨
, 0⟩B.

• M�TB
0 = PolB{ ↑∨, 0} = ⟨∧,

∨
, 0⟩B.

• MLB
0 = PolB{≤, lim=0} = ⟨∧, ⌈∨⌉,∨, 0⟩B.

• M�LB
0 = PolB{ ↑∨, lim=0} = ⟨⌈∨⌉,∨, 0⟩B.

• M�TB
0 = PolB{ ↓

∧
, 0} = PolB{ ↓

∧
, lim=0} = ⟨∧,∨, 0⟩B.

• ⟨MT<ω
0 ⟩B = PolB{≤, lim, 0} = ⟨∧,∨, 0⟩B.

Proof. By Lemma 4.7(d), each clone in CloB
MT<ω

0
(2) either is contained in MLB

0 or contains
∨

. As in
the proof of Theorem 4.11, the former (the last 4 of the 6 clones listed) are obtained by applying
G 7→ G ∩ L0 = ⟨⌈G⌉ ∪ {∨}⟩B to the clones in CloB

M(2) from Corollary 4.15, while the latter (the
first 2 listed clones) are obtained by applying G 7→ G ∩ T0 = ⟨⌈G⌉ ∪ {∨}⟩B to the clones in CloB

M(2)
containing

∨
(see Figure 4.16).

Theorem 4.19. There are precisely 9 Borel clones on 2 restricting to MT0T
<ω
1 (see Figure 4.20):

• MT0TB
1 = PolB{≤, 0, 1} = ⟨∧,

∨⟩B.

• MT0LB
1 = PolB{≤, 0, lim=1} = ⟨⌊∧⌋,∧,

∨⟩B.

• M�T0TB
1 = PolB{ ↑∨, 0, 1} = ⟨∧,

∨⟩B.

• ML0TB
1 = PolB{≤, lim=0, 1} = ⟨∧, ⌈∨⌉,∨⟩B.
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MT0TB
1 = ⟨∧,

∨⟩

MT0L1=⟨⌊∧⌋,∧,
∨⟩

M�T0T1=⟨∧,
∨⟩

ML0T1=⟨∧,⌈∨⌉,∨⟩

M�T0T1=⟨∧,∨⟩ ML0L1=⟨⌊∧⌋,⌈∨⌉⟩

M�L0T1=⟨⌈∨⌉,∨⟩M�T0L1=⟨⌊∧⌋,∧⟩

⟨MT0T
<ω
1 ⟩ = ⟨∧, ∨⟩

≅CloB
MT<ω

1
(2)

≅[⟨∧,
∨

,1⟩,⟨MTB
1 ⟩]⊆CloB

MT<ω
1

(2)

Figure 4.20: Borel clones restricting to MT0T<ω
1 , with the two indicated sublattices obtained by applying

the modularity isomorphisms from Corollary 3.23 to the Borel clones restricting to MT<ω
1 (not shown).

• M�T0TB
1 = PolB{ ↓

∧
, 0, 1} = ⟨∧,∨⟩B.

• ML0LB
1 = PolB{≤, lim=0, lim=1} = ⟨⌊∧⌋, ⌈∨⌉⟩B.

• M�L0TB
1 = PolB{ ↑∨, lim=0, 1} = ⟨⌈∨⌉,∨⟩B.

• M�T0LB
1 = PolB{ ↓

∧
, 0, lim=1} = ⟨⌊∧⌋,∧⟩B.

• ⟨MT0T
<ω
1 ⟩B = PolB{≤, lim, 0, 1} = ⟨∧,∨⟩B.

Proof. By Lemma 4.7(d), every clone in CloB
MT0T

<ω
1

(2) either is contained in ML0T1 or contains∨
. As in the proof of Theorem 4.11, the former (the last 6 of the 9 clones listed) are obtained by

applying G 7→ G ∩ L0 = ⟨⌈G⌉ ∪ {∨}⟩B from Corollary 3.23 to the clones in CloB
MT<ω

1
(2), which are

isomorphic via de Morgan duality to CloB
MT<ω

0
(2) from Theorem 4.18. For example, the de Morgan

dual of the third clone listed in Theorem 4.18 is

MLB
1 = ⟨⌊∧⌋,∧,

∨
, 1⟩B ∈ CloB

MT<ω
1

(2),
which gets mapped to

ML0LB
1 = ⟨⌈⌊∧⌋⌉, ⌈∧⌉, ⌈∨⌉, ⌈1⌉,∨⟩B

= ⟨⌈⌊∧⌋⌉,∧3, ⌈∨⌉, π0,∨⟩B

= ⟨⌊∧⌋, ⌈∨⌉⟩B

since ∧3 ∈ ⟨∧⟩ ⊆ ⟨⌈∨⌉⟩ (Lemma 3.9), ∨ ∈ ⟨⌊∧⌋⟩ similarly, and ⌊∧⌋ ∈ ML0L1. The first 3 listed
clones are similarly obtained by applying G 7→ G∩T0 = ⟨⌈G⌉ ∪ {∨}⟩B to the 3 clones in CloB

MT<ω
1

(2)
containing

∨
(or alternatively, by applying de Morgan duality within CloB

MT0T
<ω
1

(2)).

This completes the classification of the Borel clones restricting to the top cube of Post’s lattice,
i.e., the interval [⟨MT0T

<ω
1 ⟩B,OB

2 ] ⊆ CloB(2), which is depicted altogether in Figure 1.5.
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Remark 4.21. From this classification, we may read off that every Borel clone in [⟨MT0T
<ω
1 ⟩B,OB

2 ]
is some intersection of the following, which form the meet-irreducible elements of [⟨MT0T

<ω
1 ⟩B,OB

2 ].

⟨O<ω
2 ⟩, T0,T1, L0,L1, M, M�,M�.

Dually, every Borel clone in [⟨MT0T
<ω
1 ⟩B,OB

2 ] is generated by some subset of the following functions,
together with the generators ∧,∨ of MT0T

<ω
1 . In other words, the clones generated by each of the

following functions, together with ∧,∨, yield the join-irreducible elements of [⟨MT0T
<ω
1 ⟩B,OB

2 ].

0, 1,
∧

,
∨

, ⌊∧⌋, ⌈∨⌉, ?: (or ⌈→⌉, or ⌊̸→⌋).

Using the classification of the Borel clones over O<ω
2 ,T<ω

0 , and the correspondence between
self-dual clones and clones closed under 0, β given by Proposition 3.31, we easily also obtain a
classification of the Borel clones lying over 2 out of the 3 finitary self-dual, non-affine clones (3.32):

Corollary 4.22. There are precisely 2 Borel clones restricting to D<ω:

• DB = PolB{¬} = ⟨β(
∨

),¬⟩B = ⟨β(
∧

),¬⟩B.

• ⟨D<ω⟩B = PolB{lim,¬} = ⟨∃3
2,¬⟩B.

And there are precisely 3 Borel clones restricting to DT<ω
0 = DT<ω

1 :

• DTB
0 = DTB

1 = PolB{¬, 0} = ⟨β(
∨

), +3⟩B = ⟨β(
∨

)⟩B.

• DLB
0 = DLB

1 = PolB{¬, lim=0} = ⟨β(
∧

), +3⟩B.

• ⟨DT<ω
0 ⟩B = ⟨DT<ω

1 ⟩B = PolB{¬, lim, 0} = ⟨∃3
2, +3⟩B.

(See Figure 4.23.) The functions β(
∨

), β(
∧

) : 2ω→ 2 are given by

β(
∧

)(x0, x1, . . . ) =
(

x0 ∧
∨

i≥1
xi

)
∨
∧

i≥1
xi, β(

∨
)(x0, x1, . . . ) =

(
¬x0 ∧

∨

i≥1
xi

)
∨
∧

i≥1
xi.

Proof. By applying Proposition 3.31 to the Borel clones restricting to O<ω
2 (Corollary 4.8) and

T<ω
0 (Theorem 4.10), which are all easily seen to be closed under β. The generating sets above

are obtained using Lemma 3.33, by applying β to generating sets for the respective earlier clones
(namely {∨,¬}, {∧,¬}, {∨, +}, and {∧, +} for the non-essentially finite clones).

The classification of the Borel clones lying over DM<ω, which correspond via 3.31 to the Borel
clones over MT<ω

0,2 , will be given in Corollary 4.97 after we have treated those latter clones.

4.B Bounded functions

We now turn our attention to the remaining regions in Post’s lattice 1.1: the “side tubes”, between
⟨∧⟩ and T0,2, or dually between ⟨∨⟩ and T1,2; we find it more convenient to focus on the former
(left side of the diagram 1.1). Unlike above, here we are unable to give a full classification of the
corresponding Borel clones. Nonetheless, we can show some interesting partial structure, as well as
give some indications that the remaining structure may be quite complicated (see Figure 1.6).

In this subsection, we focus on the “base” of the “side tube”, below T0,<ω = Pol{∧<ω=0},
which consists of the indicator functions f : 2n → 2 of subsets f−1(1) ⊆ 2n with the finite
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DB = ⟨β(
∨

), ¬⟩

⟨D<ω⟩ = ⟨∃3
2, ¬⟩

DTB
0 = DTB

1 = ⟨β(
∨

)⟩

DL0=DL1=⟨β(
∧

),+3⟩

⟨DT<ω
0 ⟩ = ⟨DT<ω

1 ⟩ = ⟨∃3
2, +3⟩⟨DM<ω⟩ = ⟨∃3

2⟩

DML0=DML1=⟨β(
∧

)⟩

DMB = ⟨β(lim inf)⟩

Figure 4.23: Borel clones with finitary restrictions DM<ω,DT<ω
0 ,D<ω respectively.

intersection property (the meet of finitely many strings in f−1(1) is not 0⃗). Contained within these
is T0,ω = Pol{∧=0}, the indicator functions of subsets with the countable intersection property, or
equivalently functions ≤ πi for some i (assuming countable arities; recall Definition 3.5). Clearly,

T<ω1
0,ω ⊆ L0.(4.24)

We also have the following interactions with the clones from the top cube (from Remark 4.21):
Lemma 4.25. T0,<ωL

<ω1
1 ⊆ T0,ω.

Proof. We have the following positive-primitive definition of (
∧

=0) ⊆ 2ω:
∧

x⃗ = 0 ⇐⇒ ∃y⃗ ∈ 2ω
(

(lim y⃗ = 1) ∧
∧

i<ω

(x0 ∧ · · · ∧ xi−1 ∧ yi = 0)
)

.

Corollary 4.26. M�T
<ω1
0,<ω ⊆ T0,ω.

Proof. By the dual of Lemma 4.17, a Scott-continuous function f ∈ M� is either the constant 0
function, which is clearly in T0,ω, or in L1, hence in T0,ω by the above.

Remark 4.27. It is not true that M�T
<ω1
0,<ω ⊆ T0,ω; see Example 4.44.

We have already worked out the structure of the Borel clones in [⟨MT0,<ωT
<ω
1 ⟩B,TB

0,ω], as part
of the classification of the top cube in the preceding subsection:
Corollary 4.28. There are 2 , 3 , 4 , 6 Borel clones contained in T0,ω restricting to the finitary clones
T<ω

0,<ω,T0,<ωT
<ω
1 ,MT<ω

0,<ω,MT0,<ωT
<ω
1 respectively, namely ⟨⌈−⌉⟩B applied to each of the Borel

clones in CloB
O<ω

2
(2) (Corollary 4.8), CloB

T<ω
1

(2) (dual of Theorem 4.10), CloB
M<ω (2) (Corollary 4.15),

and CloB
MT<ω

1
(2) (dual of Theorem 4.18); see Figure 4.29.

Proof. By Proposition 3.14. (We computed ⟨⌈−⌉⟩B of these clones in proving Theorems 4.10, 4.11,
4.18 and 4.19; here we need only omit the last step of adding back ∨.)

Recall that by Proposition 3.14, every Borel clone above ⟨MT0,<ωT
<ω
1 ⟩B is sandwiched between

exactly one of the above 15 clones in [⟨MT0,<ωT
<ω
1 ⟩B,TB

0,ω] (the dashed blocks in Figure 4.29) and
the corresponding clone above ⟨MT<ω

1 ⟩B = ⟨∧,∨, 1⟩B (Figures 4.9, 4.12 and 4.16). More generally,
the same holds for <ω1-ary clones; the only difference is that there are more than just 15 clones
below T<ω1

0,ω , and we do not have a classification of all of them. Nonetheless, we may deduce the
following “dichotomies” for arbitrary <ω1-ary clones above ⟨MT0,<ωT

<ω
1 ⟩<ω1 :
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L0,<ωT1

T0,<ωTB
1

∞ clones

MT0,ω=⟨∧,⌈∨⌉,0⟩

M�T0,ω=⟨∧,⌈∨⌉,0⟩ M�T0,<ω=⟨⌈∨⌉,0⟩

⟨MT<ω
0,<ω⟩ = ⟨⌈∨⌉, 0⟩

ML0,<ω

M�T0,<ω

MTB
0,<ω

∞ clones

MT0,ωT1=⟨∧,⌈∨⌉⟩

MT0,ωL1=⟨⌈⌊∧⌋⌉,⌈∨⌉⟩

M�T0,<ωT1=⟨⌈∨⌉⟩

M�T0,ωT1=⟨∧,⌈∨⌉⟩

M�T0,<ωL1=⟨⌈⌊∧⌋⌉⟩

⟨MT0,<ωT
<ω
1 ⟩ = ⟨⌈∨⌉⟩

ML0,<ωT1

∀2∈M�T0,<ωT1

lim inf∈MT0,<ωTB
1

∞ clones

T0,ω=⟨∧, ̸→⟩

⟨T<ω
0,<ω⟩ = ⟨̸→⟩

L0,<ω

TB
0,<ω

∞ clones

T0,ωT1=⟨∧,⌈→⌉⟩

T0,<ωL1=⟨⌈∨⌉,⌈→⌉⟩

⟨T0,<ωT
<ω
1 ⟩ = ⟨⌈→⌉⟩

Figure 4.29: All Borel clones restricting to T<ω
0,<ω, T0,<ωT<ω

1 , MT<ω
0,<ω, or MT0,<ωT<ω

1 that are contained
within T0,ω (dashed blocks), plus some examples of Borel clones restricting to these finitary clones that are
not contained within T0,ω (see Figure 1.6 and Section 4.D for structure of the infinite shaded regions).

Corollary 4.30 (of preceding subsection). Let MT0,<ωT
<ω
1 ⊆ F ⊆ O<ω1

2 be a <ω1-ary clone.

(a) Either F ⊆ ⟨O<ω
2 ⟩, or F ⊆ L1, or F ⊆M�, or

∧ ∈ F .
(b) Either F ⊆ ⟨O<ω

2 ⟩, or F ⊆M�, or ⌈⌊∧⌋⌉ ∈ F .
(c) Either F ⊆ ⟨O<ω

2 ⟩, or F ⊆M�, or ⌈∨⌉ ∈ F .

Note that in each case, the last alternative is mutually exclusive with the others.

Proof. (a) is a restatement of the dual of Lemma 4.7 (using the case there corresponding to the
finitary restriction of ⟨F ∪ {1}⟩).

(c) follows from applying Lemma 4.7 to ⟨F ∪ {1}⟩<ω1 ∈ [⟨MT<ω
1 ⟩<ω1 ,O<ω1

2 ], which shows that if
F ̸⊆ ⟨O<ω

2 ⟩, F ̸⊆M�, then
∨ ∈ ⟨F ∪{1}⟩<ω1 , so by Corollary 3.23, ⌈∨⌉ ∈ ⌈⟨F ∪{1}⟩<ω1⌉ ⊆ F ∩T0,ω.

(b) Suppose F ̸⊆ ⟨O<ω
2 ⟩,M�. If F ̸⊆ L1, then

∧ ∈ F by (a), and so clearly ⌈⌊∧⌋⌉ ∈ F (since
F ⊇MT0,<ωT

<ω
1 ∋ ∧, ⌈∨⌉). Otherwise, we have ⟨F ∪ {1}⟩<ω1 ∈ [⟨MT<ω

1 ⟩<ω1 ,L<ω1
1 ]. By the dual of
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Corollary 3.23 with H = ⟨MT0M11<ω⟩<ω1 and ↑H = L<ω1
1 as in (3.24), ⟨F ∪ {1}⟩<ω1 corresponds

to ⟨F ∪ {0, 1}⟩<ω1 ∈ [⟨M<ω⟩<ω1 ,O<ω1
2 ], which is not contained in ⟨O<ω

2 ⟩ or M�, hence contains∧
by the dual of Lemma 4.7, whence ⌊∧⌋ ∈ ⌊⟨F ∪ {0, 1}⟩<ω1⌋ ⊆ ⟨F ∪ {1}⟩<ω1 ∩ T1,ω. Applying

Corollary 3.23 again yields ⌈⌊∧⌋⌉ ∈ ⌈⟨F ∪ {1}⟩<ω1⌉ ⊆ F ∩ T0,ω. (This is essentially a more explicit
version of the argument used in Theorems 4.10 and 4.18 to determine [⟨MT<ω

0 ⟩B,LB
0 ].)

Using the preceding dichotomies, we now simplify some of the machinery from Section 3.D, on
the global structure of the “side tubes” of Post’s lattice, for Borel and/or <ω1-ary clones.

Recall Definition 3.15 of the downward-closure ↓G of a clone, as well as Definition 3.26 of the
upward-closure ↑f of a function, which is the canonical candidate for a monotone function ≥ f .

Remark 4.31. For a Borel function f : 2ω→ 2, ↑f need not be Borel. Conceptually, this is because
the disjunction in Definition 3.26 is over 2ω, hence yields an analytic rather than Borel set.

For a concrete example, let A ⊆ 2ω× 2ω be a Borel set whose projection onto the first coordinate
is not Borel (see e.g., [Kec95, 14.2]), and let e : 2ω→2ω be a continuous embedding whose image is an
antichain, e.g., e(x⃗) := (x0,¬x0, x1,¬x1, . . . ). Then the upward-closure of (e×e)(A) ⊆ 2ω×2ω ≅ 2ω

is not Borel, since the first projection of A is {x⃗ ∈ 2ω | (e(x⃗), 1⃗) ∈ (e× e)(A)}.

Thus for a Borel clone ∧ ∈ F ⊆ OB
2 , the canonical candidate for a monotone subclone G ⊆M

with G ⊆ F ⊆ ↓G, namely G = ↑[F ], need not be Borel (hence need not be contained in F ). The
following shows that nonetheless, ↑[F ] is always “approximately” contained in F :

Lemma 4.32. Let ∧ ∈ F ⊆ O<ω1
2 be a <ω1-ary clone such that F ̸⊆M, ⟨O<ω

2 ⟩, let f ∈ F n, and let
h : 2n→ 2n be Borel (meaning that each hi := πi ◦ h : 2n→ 2 is Borel) with h ≤ id. Then f ◦ h ∈ F .

Note that the assumption h ≤ id implies that f ◦ h ≤ ↑f . Thus, h may be regarded as a Borel
“choice function” witnessing the disjunction in the definition of ↑f .

Proof. Since F ̸⊆ Pol<ω1{≤}, we have F ∩O<ω
2 ̸⊆M<ω (by the right adjunction in Corollary 2.22),

and so (from Post’s lattice 1.1) ⌈→⌉ ∈ T0T
<ω
1 ⊆ F ; and if F ̸⊆ T1, then ̸→ ∈ T<ω

0 ⊆ F . Also since
F ̸⊆M, ⟨O<ω

2 ⟩, from Corollary 4.30, we have ⌈⌊∧⌋⌉ ∈ F ; and if F ̸⊆ L1, then
∧ ∈ F .

First suppose F ̸⊆ T1. Since h ≤ id, each hi ≤ πi, so hi ∈ TB
0,ω = ⟨∧, ̸→⟩B ⊆ F , and so f ◦h ∈ F .

Now suppose F ⊆ T1. Then either F ⊆ L1 or not; in either case, we have
∧<κ ∈ F , and there is

J ⊆ n of size |J | < κ such that f(x⃗) = 1 whenever
∧

j∈J xj = 1, for κ = ω or ω1 respectively. We
may assume that h(x⃗) = x⃗ for all such x⃗, by replacing h with h(x⃗) ∨ (

∧
j∈J xj ∧ x⃗) which does not

affect f ◦ h. From above, each hi ∈ ⟨
∧

, ̸→⟩, whence for any j < n, we have πj ∨ hi ∈ ⟨⌊
∧⌋, ⌊̸→⌋⟩

(dual of Lemma 3.10), whence

hi =
∧

j∈J

(πi ∧ (πj ∨ hi)) ∈ ⟨
∧<κ, ⌈⌊∧⌋⌉, ⌈⌊̸→⌋⌉⟩<ω1 = ⟨∧<κ, ⌈⌊∧⌋⌉, ⌈→⌉⟩<ω1 ⊆ F.

Recall from Lemma 2.17 that the countable closure (or <ω1-closure) of a clone F ⊆ O<ω1
2 consists

of all functions which agree on any countably many inputs with a function in F , or equivalently, all
functions which preserve every <ω1-ary relation preserved by every function in F .

Corollary 4.33. Let ∧ ∈ F ⊆ O<ω1
2 be a <ω1-ary clone. Then for every f ∈ F n, ↑f is in the

countable closure of F .
Thus if F is countably closed, i.e., defined as Pol<ω1 of a set of <ω1-ary relations, then

↑[F ] = F∩M, so F ⊆ ↓(F∩M), and so F belongs to the domain of the embedding in Proposition 3.21.
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Proof. If f is monotone, then ↑f = f . If f depends on finitely many variables, then ↑f depends on
those same variables, and the result follows from inspecting finitary Post’s lattice 1.1. Otherwise,
in order to find g ∈ F n agreeing with ↑f on countably many a⃗i ∈ 2n, apply Lemma 4.32 with the
“choice function” h : 2n→ 2n which is the identity at all x⃗ except the a⃗i ∈ ↑f−1(1), which it maps to
any a⃗i ≥ h(⃗ai) ∈ f−1(1). The last statement follows from (3.27).

We also have the following, which concerns the “left-versus-right” direction (T1 or not) of the
“side tubes” of Post’s lattice 1.1, rather than the “front-versus-back” direction (M or not):

Proposition 4.34. We have isomorphisms

[⟨⌈∨⌉⟩<ω1 ,L<ω1
1 ] ≅ {G ∈ [⟨⌈∨⌉, 0⟩<ω1 ,O<ω1

2 ] | G ⊆ ↓(G ∩ L1)}
F 7→ ⟨F ∪ {0}⟩<ω1 = {f0 | f ∈ F≥2}

G ∩ L1 ←[ G,

[⟨∧⟩<ω1 ,T<ω1
1 ] ≅ [⟨∧, 0⟩<ω1 ,O<ω1

2 ]
F 7→ ⟨F ∪ {0}⟩<ω1

G ∩ T1 ←[ G.

In each case, for every clone F on the left, we have ⟨F ∪ {0}⟩<ω1 ⊆ ↓F .

Proof. To show that these maps compose to the identity on the left, in each case, let
∧<κ ∈ F ⊆ T<ω1

1
be a clone such that each f ∈ F is <κ-continuous at 1⃗, for κ = ω, ω1 respectively. So for f ∈ F 1+n,
there is J ⊆ n of size < κ such that f(1, x⃗) = 1 whenever

∧
j∈J xj = 1. Thus

f0(x⃗) = f(0, x⃗) ≤ f
(∧

j∈J

xj , x⃗
)

.

This shows that ⟨F ∪ {0}⟩<ω1 ⊆ ↓F . If f0 is also <κ-continuous at 1⃗, then we may pick J so that
also f(0, x⃗) = 1 whenever

∧
j∈J xj = 1, whence the above ≤ becomes =, showing that f0 ∈ F . Thus

⟨F ∪ {0}⟩<ω1 ∩ L1, respectively ⟨F ∪ {0}⟩<ω1 ∩ T1, is contained in F ; the other inclusion is trivial.
Now let ⌈∨⌉, 0 ∈ G ⊆ O<ω1

2 be a clone such that G ⊆ ↓F for F := G ∩ L1; we must show
G ⊆ ⟨F ∪ {0}⟩. Let g ∈ Gn, and let g ≤ f ∈ F n = Gn ∩ L1. Then h : 21+n→ 2 with

h(y, x⃗) := f(x⃗) ∧ (y ∨ g(x⃗)) = ⌈∨⌉(f(x⃗), y, g(x⃗))

has h0 = g and h1 = f , thus h ∈ L1, and so h ∈ G ∩ L1 = F with g = h0 ∈ ⟨F ∪ {0}⟩.
Finally, let

∧
, 0 ∈ G ⊆ O<ω1

2 be a clone, and let F := G ∩ T1; we must show G ⊆ ⟨F ∪ {0}⟩. If
G ⊆M, then clearly the only monotone function not in T1 is 0, so F = G \ {0} and G = F ∪ {0}.
If G ⊆ ⟨O<ω

2 ⟩, the result follows by inspection of Post’s lattice Figure 1.1. Otherwise, for every
g ∈ G\T1\{0}, we have f := g∨∧ ∈ G∩T1 = F by Lemma 4.32 with h : 2n→2n which is the identity
at all x⃗ except for 1⃗ which gets mapped to any element of g−1(1). Since G ̸⊆M, from Post’s lattice
1.1 we also have ⌈→⌉ ∈ G ∩ T1 = F , so g = f ̸→∧ ∈ ⟨f, ̸→,

∧⟩ ⊆ ⟨f, ⌈→⌉, 0,
∧⟩ ⊆ ⟨F ∪ {0}⟩.

Similarly to Remark 4.31, note that for a Borel clone G ⊆ OB
2 , ↓G may contain non-Borel

functions (e.g., if 1 ∈ G, then ↓G contains all functions). Following Notation 4.2, we adopt

Notation 4.35. For a Borel clone G ⊆ OB
2 , its Borel downward-closure is

↓BG := ↓G ∩OB
2 .
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Proposition 4.36. For every Borel clone ∧ ∈ G ⊆ OB
2 , ↓BG is a clone.

Proof. If G ⊆M, this follows from Lemma 3.16; if G ⊆ ⟨O<ω
2 ⟩, this follows from inspecting finitary

Post’s lattice 1.1. Suppose neither of these holds. Then from Post’s lattice 1.1, MT0,<ωT
<ω
1 ⊆ G,

whence by Corollary 4.30, ⟨G ∪ {0}⟩B = ⟨G ∪ {0,
∧}⟩B = ⟨G ∪ TB

0,ω⟩B (since
∧ ∈ ⟨0, ⌈⌊∧⌋⌉⟩), which

by Lemma 3.18 with F = OB
2 is equal to ⟨↓BG⟩B. But by Lemma 3.12, every function in ⟨G∪ {0}⟩B

is g0 for some g ∈ G, which by Proposition 4.34 is in ↓G. So ⟨↓BG⟩B ⊆ ↓BG.

Corollary 4.37 (cf. Proposition 3.21). We have an order-embedding with right adjoint retraction

(⟨F∪{1}⟩B,↓BF )

(F∩T0,ω ,↓BF ) [⟨∧⟩B,TB
0,ω]× [TB

0,ω,OB
2 ] [⟨∧, 1⟩B,OB

2 ]× [TB
0,ω,OB

2 ]

∋

(G,H)

F [⟨∧⟩B,OB
2 ] G∩H

∈

∈ ≅

⊣

∈ ∋

Proof. By Corollary 3.20, ⟨F ∪ {1}⟩B ∩ ↓BF = ⟨F ∪ {1}⟩B ∩ ↓F = F .

Thus, Figure 3.28(b) describes the entire left side (above ⟨∧⟩B) of the Borel version of Post’s
lattice. We may also drop the monotonicity assumption from Corollaries 3.22 and 3.23:

Corollary 4.38. For any Borel clones ∧ ∈ G ⊆ TB
0,ω and G ⊆ H ⊆ TB

0,ω, the modularity adjunction

[G, ⟨G ∪ {1}⟩B] ⇄ [H, ⟨H ∪ {1}⟩B]

exhibits the left interval as a retract of the right.

Corollary 4.39. For any Borel clone ∧ ∈ H ⊆ OB
2 , we have modularity isomorphisms

[H ∩ T0,ω,TB
0,ω] ≅ [H, ↓H] ≅ [⟨H ∪ {1}⟩B,OB

2 ].

Corollary 4.33 continues to apply to <ω1-ary clones, rather than Borel clones; there does not
seem to be a direct Borel analogue, since (as noted in Remark 4.31) even for a Borel clone F , ↑[F ]
need not be Borel. (Note that the last conclusion of Corollary 4.33 is subsumed in the Borel setting
by Proposition 4.36.) Nonetheless, we do have the following Borel variant of Corollary 4.33:

Proposition 4.40. Let ∧ ∈ F ⊆ OB
2 be a Borel clone. Suppose F = PolB(M) for a countable set

M of Borel downward-closed relations R ⊆ 2k, k ≤ ω. Then ↑[F ] ⊆ ↓(F ∩M), and so F ⊆ ↓(F ∩M).

Proof. For each f ∈ F n, we have ↑f ∈ Pol(M) ∩M by Corollary 4.33. Apply now the reflection
theorem [Kec95, 35.10] to the analytic set ↑f−1(1) ⊆ 2n, to get a Borel superset g−1(1) ⊇ ↑f−1(1)
whose indicator function g is in Poln(M). To do so, we need to verify the hypothesis that the class
of sets g−1(1) ⊆ 2n whose indicator function g is in Pol(M) is Π1

1 on Σ1
1, which means (see again

[Kec95, 35.10]), in terms of the indicator functions, that for any family of functions (gα : 2n→2)α∈2ω

which is the indicator function in two variables of an analytic set {(α, x⃗) | gα(x⃗) = 1} ⊆ 2ω × 2n,
the set of indices α such that gα ∈ Pol(M) is Π1

1. Indeed,

gα ∈ Pol(M) ⇐⇒ ∀R ∈Mk ∀(xi,j)i<k,j<n ∈ 2k×n
(
∀j < n

(
(xi,j)i ∈ R

)
=⇒

(
gα((xi,j)j)

)
i
∈ R

)
;
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and by downward-closure of R,
(
gα((xi,j)j)

)
i
∈ R ⇐⇒ ∀y⃗ ∈ 2k

(
y⃗ ≤

(
gα((xi,j)j)

)
i

=⇒ y⃗ ∈ R
)

⇐⇒ ∀y⃗ ∈ 2k
(
∀i < k

(
yi = 1 =⇒ gα((xi,j)j) = 1

)
=⇒ y⃗ ∈ R

)

which are clearly Π1
1. So we have found Borel ↑f ≤ g ∈ Pol(M). By Dyck’s monotone separation

theorem [Kec95, 28.12], there is a monotone Borel ↑f ≤ h ≤ g. Since each R ∈ M is downward-
closed, we still have h ∈ Pol(M), so h ∈ F ∩M with ↑f ≤ h, as desired.

Example 4.41. Each TB
0,k = PolB{∧k=0} is defined by a countable-arity downward-closed Borel

relation (
∧k=0) ⊆ 2k. Thus, the above shows that every T0,k Borel function is ≤ a monotone such

Borel function. (See Section 4.D for similar but more involved examples.)

Remark 4.42. The above proof applies more generally if M is a possibly uncountable family
{Ri}i∈I of relations, indexed over some standard Borel space I, such that {(i, x⃗) | x⃗ ∈ Ri} is Π1

1.

We close this subsection with some basic remarks on the Borel clones below T0,<ω which are not
contained in T0,ω; we will study these clones in more detail in Section 4.D (producing in particular
the countably infinitely many examples in the crescent-shaped shaded regions in Figure 4.29).

Example 4.43. lim inf : 2ω→ 2 is in MT0,<ωTB
1 , indeed in ΛT0TB

1 (it is the indicator function of
the Fréchet filter of cofinite sets). But it is not in T0,ω, or even (4.24) in L0, since the strings of the
form 0 · · · 0111 · · · ∈ lim inf−1(1) converge to 0⃗.

Example 4.44. The quantifier ∀2 : 2ω→ 2, “for all but at most one input bits”, namely

∀2(x⃗) =
∧

i<j<ω

(xi ∨ xj) =
∨

i<ω

∧

j ̸=i

xj

(recall Definition 3.1), is also in MT0,<ωTB
1 \ T0,ω. Unlike lim inf, it is in ⟨∧,∨⟩B = M�T0TB

1 ⊆ LB
0 .

In fact, ∀2 is a “minimal” example of a non-T0,ω function:

Lemma 4.45. If f : 2ω→ 2 /∈ T0,ω, then ∀2 ∈ ⟨{f} ∪M�T0,ωTB
1 ⟩ = ⟨f,

∧
, ⌈∨⌉⟩.

Proof. Since f /∈ T0,ω, there are x⃗0, x⃗1, . . . ∈ f−1(1) with xi,i = πi(x⃗i) = 0. Define

gi : 2ω −→ 2ω

y⃗ 7−→ (yi ∨ x⃗i) ∧ y⃗

=
{

x⃗i ∧ y⃗ if yi = 0,

y⃗ if yi = 1.

Then each coordinate gi,j := πj ◦ gi of each gi is either πj (if xi,j = 1) or πi ∧ πj (if xi,j = 0), so
gi,j ∈ ⟨∧⟩. Thus ∧

i gi : 2ω −→ 2ω

0111 · · · 7−→ x⃗0

1011 · · · 7−→ x⃗1

1101 · · · 7−→ x⃗2
...
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has each coordinate in ⟨∧⟩, and so we have f◦∧i gi ∈ ⟨f,
∧⟩, mapping each string with exactly one 0 in

the ith coordinate to f(x⃗i) = 1. By Corollary 4.33, we then in fact have some ∀2 ≤ h ∈ ⟨f,
∧⟩. Since

∀2 ∈M�T0,<ωTB
1 ⊆M�TB

1 = ⟨M�T0,ωTB
1 ∪ {1}⟩<ω1 ⊆ ⟨{f} ∪M�T0,ωTB

1 ∪ {1}⟩<ω1 , by Corollary 3.20
it follows that ∀2 ∈ ⟨{f} ∪M�T0,ωTB

1 ⟩<ω1 .

Corollary 4.46. Let MT0,<ωT
<ω
1 ⊆ F ⊆ T<ω1

0,<ω be a <ω1-ary clone. Then F ⊆ T0,ω or ∀2 ∈ F .

Note that as in Corollary 4.30, Borelness of F is not required.

Proof. If F ̸⊆ T0,ω, then by Lemma 4.25 and Corollary 4.26, F ̸⊆ L1,M�, and clearly also F ̸⊆ ⟨O<ω
2 ⟩

(since F ̸⊆ T0,ω), whence by Corollary 4.30,
∧ ∈ F ; now apply the preceding lemma.

Remark 4.47. We do not know whether MT0,<ωTB
1 = ⟨∀2⟩B, but suspect this to be the case. For

instance, we have ∀3 ∈ ⟨∀2⟩ (recall again Definition 3.1), since it is easily seen that

∀3(x⃗) ≤ ∀2(∀2(xi0,0 , xi0,1 , . . . ), ∀2(xi1,0 , xi1,1 , . . . ), . . . ),

where (ij,k)j,k∈ω is any bijection ω × ω ≅ ω; now apply Corollary 3.20. More generally, ⟨∀2⟩ = ⟨∀k⟩
for any 2 ≤ k < ω.

Note that if MT0,<ωTB
1 = ⟨∀2⟩B, then by Corollary 4.39, we would have a complete classification

of all Borel clones “just above” T0,ω in Figure 4.29, i.e., between M�T0,<ωT1 and L0,<ω which is the
downward-closure ↓M�T0,<ωT1 (see Remark 4.83).

4.C Filters and ideals

Next, we consider the Borel clones below Λ = Pol{∧}, which consists of indicator functions f : 2n→2
of filters f−1(1) ⊆ 2n or the empty set; the latter is excluded in ΛT1 = Pol{∧, 1}, while the improper
filter 2n is excluded in ΛT0. Similarly, Λω = Pol{∧} consists of indicator functions of σ-filters. But
since 2ω is countably generated under meets, a σ-filter in it is just the principal filter above some
element x⃗, namely {y⃗ ∈ 2ω | x⃗ ≤ y⃗}, whose indicator function is

∧
i<ω
xi=1

πi. This yields

Λ<ω1
ω = ⟨∧, 0, 1⟩<ω1 , ΛωT

<ω1
1 = ⟨∧, 1⟩<ω1 ,(4.48)

ΛωT
<ω1
0 = ⟨∧, 0⟩<ω1 , ΛωT0T

<ω1
1 = ⟨∧⟩<ω1 .

We also clearly have

ΛM� = Pol{∧, ↓
∧} = Pol{∧} = Λω,(4.49)

ΛωT0 = Pol{∧, 0} ⊆ Pol{∧=0} = T0,ω.(4.50)

Lemma 4.51. ΛL<ω1
0 = ΛT<ω1

0,ω .

Proof. ⊇ by (4.24); conversely, if f : 2ω→ 2 is the indicator function of a filter f−1(1) but f ̸≤ πi

for each i < ω, then each of the strings x⃗i := 1 · · · 101 · · · with a single 0 in the ith bit would be in
f−1(1), whence x⃗0, x⃗0 ∧ x⃗1, · · · ∈ f−1(1) would converge to 0⃗, whence f /∈ L0.

Remark 4.52. ΛL<ω1
1 = ⟨ΛT<ω

1 ⟩<ω1 .

Proof. Dually, an ideal ⊆ 2ω with 0⃗ in the interior is a clopen subgroup mod 2.
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ΛT0T
<ω1
1 = Pol{∧, 0, 1}

⟨lim inf⟩

≈

ΛT0,ωT1=ΛL0T1

⟨⌈lim inf⌉⟩

≈

ΛωT0T1=ΛM�T0T1=⟨∧⟩

⟨ΛT0T
<ω
1 ⟩ = ⟨∧⟩

≅Clo<ω1
ΛT<ω

0
(2)

≅Clo<ω1
ΛT<ω

1
(2)

≅Clo<ω1
Λ<ω (2)

Figure 4.53: All countable arity clones restricting to ΛT0T<ω
1 . Aside from the 6 labelled, all other clones

must lie in one of the two ‘≈’ regions, inside of which no clones can be distinguished by countable arity
relations. The clones restricting to ΛT<ω

0 ,ΛT<ω
1 ,Λ<ω are isomorphic to the blocks shown.

From these observations, we may compute all Borel clones that are the intersection of Λ with a
clone from the top cube (Remark 4.21); see Figure 4.53.

We now show that these are “approximately” all of the Borel clones, indeed all of the <ω1-ary
clones, with finitary restriction Λ<ω or one of its relatives. To do so, we need “dichotomies” along
the lines of Corollary 4.30 and Lemma 4.45. Note however that the proof technique used there
does not apply, since it depended on a prior understanding of [⟨MT0,<ωT1⟩,T0,ω], whereas we lack a
similar understanding of ΛT0,ω. Instead, we use the following, which is implicit in [Kah92]:

Lemma 4.54 (Kahane). If f : 2ω→ 2 ∈MT0,2 \ L0, then lim inf ∈ ⟨f,∧⟩.
(Monotonicity of f is automatic if f ∈ Λ, but is in fact not required otherwise; see Lemma 4.74.)

Proof. As in Lemma 4.7(d), there are x⃗0 ≥ x⃗1 ≥ · · · in f−1(1) converging to 0⃗ ∈ f−1(0). By
monotonicity, it follows that f(y⃗) = 1 whenever y⃗ has cofinally many 1’s, i.e.,

lim inf ≤ f which implies by de Morgan duality δ(f) = ¬f¬ ≤ lim sup .

But since f ∈ T0,2, we have f ∧ f¬ = 0, i.e., f ≤ ¬f¬; thus

f(y⃗) = lim y⃗ whenever y⃗ ∈ 2ω converges.
Hence

lim inf y⃗ = lim
n→∞

inf
i≥n

yi = lim
n→∞

lim
m→∞

(yi ∧ yi+1 ∧ · · · ∧ ym)

= f




f(y0, y0 ∧ y1, y0 ∧ y1 ∧ y2, . . . ),
f(y1, y1 ∧ y2, y1 ∧ y2 ∧ y3, . . . ),
f(y2, y2 ∧ y3, y2 ∧ y3 ∧ y4, . . . ),
. . .


.
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Corollary 4.55. If f : 2ω→ 2 ∈ Λ \M�, then ⌈lim inf⌉ ∈ ⟨f,∧⟩.

Proof. Since f /∈ M�, it is clearly not a constant function; thus f ∈ ΛT0T1. If f /∈ L0, then
Lemma 4.54 applies; so suppose f ∈ ΛL<ω1

0 = ΛT<ω1
0,ω (Lemma 4.51). Let x⃗ :=

∧
f−1(1) and

g(y⃗) := f(x⃗ ∨ y⃗) = f
(
(xi ? 1 : yi)i<ω

)
;

then g ∈ ⟨f, 1⟩ ⊆ Λ. Since f does not preserve ↓
∧

, and f−1(1) ⊆ 2ω is a filter, there is a decreasing
sequence in f−1(1) converging to x⃗ ∈ f−1(0); the meet of each term in this sequence with ¬x⃗ is then
a sequence in g−1(1) converging to 0⃗ ∈ g−1(0), and so g ∈ ΛT0 \L0. By Lemma 4.54, lim inf ∈ ⟨g,∧⟩,
whence by Proposition 3.14, ⟨f,∧⟩ = ⟨⌈⟨f,∧, 1⟩⌉⟩ ⊇ ⟨⌈⟨g,∧⟩⌉⟩ ∋ ⌈lim inf⌉.

Corollary 4.56. If f : 2ω→ 2 ∈ Λ is discontinuous, then
∧ ∈ ⟨f,∧⟩.

Proof. If f /∈M�, then by the preceding corollary, we get ⌈lim inf⌉ ∈ ⟨f,∧⟩, from which we get
∧

x⃗ =
⌈lim inf⌉(x0; x1; x1, x2; x1, x2, x3; x1, x2, x3, x4; . . . ). Otherwise, f ∈ ΛM<ω1� = Λ<ω1

ω = ⟨∧, 0, 1⟩ω1

((4.49) and (4.48)); since f is discontinuous, it must be a meet of infinitely many variables, from
which we easily get

∧
via a variable substitution.

These results show that the <ω1-ary clones Clo<ω1
ΛT0T

<ω
1

(2) restricting to ΛT0T
<ω
1 , say, are as

depicted in Figure 4.53, with all other potential clones in one of the intervals [lim inf,ΛT0T1] or
[⌈lim inf⌉,ΛT0,ωT1]. Within these intervals, we have a mismatch between the minimal functions
provided by Lemma 4.54 and Corollary 4.55 and the invariant relations: for example, not every
Borel filter f ∈ ΛT0TB

1 can be constructed from the Fréchet filter lim inf. (See Example 4.62.)
We point out however that this is true “approximately”. Recall again from Lemma 2.17 that the
countable closure of a clone consists of all functions agreeing on any countably many input strings.

Proposition 4.57. For any finitary clone ∧ ∈ F ⊆ O<ω
2 in Post’s lattice, the infinitary clone ⟨F ⟩

(of arbitrary arity) is the countable closure of ⟨F ∪ {lim inf}⟩.

(Here, as usual, lim inf means lim infω : 2ω→ 2.)

Proof. Since ∧ ∈ F , we have
∧ ∈ ⟨F ⟩, and so lim inf ∈ ⟨F ⟩; this shows ⊇. To show ⊆: let g ∈ ⟨F ⟩n

and x⃗0, x⃗1, . . . ∈ 2n; we must find f ∈ ⟨F ∪ {lim inf}⟩n agreeing with g on each x⃗i. Since g ∈ ⟨F ⟩,
we may find f0, f1, . . . ∈ ⟨F ⟩n such that fi agrees with g on x⃗0, . . . , x⃗i−1. Let f := lim infi fi.

Corollary 4.58. ΛT0Tω
1 ⊆ 22ω is the countable closure of ⟨lim inf⟩ω.

Corollary 4.59. ΛTω
0 ,ΛTω

1 ,Λω are the countable closures of ⟨lim inf, 0⟩ω, ⟨lim inf, 1⟩ω, ⟨lim inf, 0, 1⟩ω.

Proof. A function f ∈M is either constant or preserves both 0, 1.

Corollary 4.60. ΛT0,ωTω
1 ,ΛTω

0,ω are the countable closures of ⟨⌈lim inf⌉⟩ω, ⟨⌈lim inf⌉, 0⟩ω.

Proof. This may be seen using the modularity isomorphisms (similarly to Corollary 4.55), or by
slightly modifying the proof of Proposition 4.57: if g ∈MT0,ω, say (up to a variable permutation)
g ≤ π0, then we may pick the fi in the proof of Proposition 4.57 to agree with g on 0111 · · ·, hence
also fi ≤ π0; then f = ⌈lim inf⌉(π0, f0, f1, . . . ).

The following summarizes our positive classification results about Λ<ω and its variants:

40



Theorem 4.61. There are precisely 4 countably closed <ω1-ary clones on 2 restricting to ΛT0T
<ω
1

(see Figure 4.53):

• ΛT0T
<ω1
1 = Pol<ω1{∧, 0, 1} = countable closure of ⟨lim inf⟩B.

• ΛT0,ωT
<ω1
1 = ΛL0T

<ω1
1 = Pol<ω1{∧, lim=0, 1} = countable closure of ⟨⌈lim inf⌉⟩B.

• ΛωT0T
<ω1
1 = ΛM�T0T

<ω1
1 = Pol<ω1{∧, 0, 1} = ⟨∧⟩B.

• ⟨ΛT0T
<ω
1 ⟩<ω1 = ΛM�T0T

<ω1
1 = ΛT0L

<ω1
1 = Pol<ω1{∧, lim, 0, 1} = ⟨∧⟩B.

Every other (non-countably-closed) <ω1-ary clone restricting to ΛT0T
<ω
1 lies in one of the intervals

in the first two bullet points, between the generated clone and its countable closure. Moreover :

(a) The <ω1-ary clones restricting to ΛT<ω
0 are isomorphic to these, via F 7→ ⟨F ∪ {0}⟩<ω1 .

(b) The <ω1-ary clones restricting to ΛT<ω
1 are isomorphic to those in [⟨ΛT0T

<ω
1 ⟩B,ΛT0,ωT

<ω1
1 ],

via F 7→ ⟨F ∪{1}⟩<ω1 , as are the <ω1-ary clones restricting to Λ<ω, via F 7→ ⟨F ∪{0, 1}⟩<ω1 .

(c) Every F ∈ [⟨⌈lim inf⌉⟩B,ΛT0,ωT
<ω1
1 ] is T0,ω intersected with some G ∈ [⟨lim inf⟩B,ΛT0T

<ω1
1 ].

(Similarly for the clones in [⟨⌈lim inf⌉, 0⟩B,ΛT<ω1
0,ω ] versus [⟨lim inf, 0⟩B,ΛT<ω1

0 ].)

Proof. The equivalent defining invariant relations are by Lemma 4.51 and Remark 4.52, the countable
closure definitions are by the preceding corollaries, and that these options exhaust Clo<ω1

ΛT0T
<ω
1

(2) is
by Lemma 4.54 and Corollaries 4.55 and 4.56.

(a) follows from Proposition 4.34, which shows that the clones containing
∧

in both fibers are
isomorphic, and Corollary 4.56, which shows that the only clones not containing

∧
in both fibers

are the essentially finitary ones.
(b) follows from Proposition 3.14 and (a), as does (c) since [⟨lim inf⟩B,ΛT0T

<ω1
1 ] is sandwiched

between the two intervals in (b).

We close this subsection by showing that indeed, ⟨lim inf⟩B ⫋ ΛT0TB
1 :

Example 4.62. The indicator function f : 2ω→ 2 of the summable filter,

f(x⃗) = 1 :⇐⇒
∑

i<ω
xi=0

1
i + 1 <∞,

is not in ⟨lim inf⟩. This follows from a much more general result of Kanovei–Reeken [KR03].
Indeed, note, first, that every function g ∈ ⟨lim inf⟩ω, which is a priori a composite of copies of

lim inf, may be written as such a composite in “normal form” as follows: consider first the smallest
subclass L ⊆ ⟨lim inf⟩ω of functions containing all projections and closed under left composition
(h0, h1, . . . ) 7→ lim infi hi with lim inf, subject to the constraint that the hi depend on disjoint sets of
variables; then g can be obtained from some h ∈ L via a variable substitution

g(x0, x1, . . . ) = h(xs(0), xs(1), . . . ) = h(s∗(x⃗)) where s∗(x⃗) := (xs(0), xs(1), . . . )

for some s : ω→ ω. (This is easily seen via a minor variation of Lemma 2.8.) This means that
g−1(1) ⊆ 2ω is the preimage of h−1(1) ⊆ 2ω under s∗ : 2ω→2ω; such an s is called a Rudin–Keisler
reduction of the filter g−1(1) to the filter h−1(1). Now the construction of h via left composition of
lim inf with functions hi with disjoint variable sets means in turn that h−1(1) is a Fubini product,
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mod the Fréchet filter lim inf−1(1), of the filters h−1
i (1). Thus, to say that g ∈ ⟨lim inf⟩ means

that the filter g−1(1) ⊆ 2ω Rudin–Keisler reduces to a filter h−1(1) which is a transfinitely iterated
Fubini product, mod the Fréchet filter, of principal filters π−1

i (1). Equivalently, the dual ideal
¬[g−1(1)] ⊆ 2ω (i.e., subgroup mod 2) Rudin–Keisler reduces to an ideal ¬[h−1(1)] which is a
transfinitely iterated Fubini product, mod the Fréchet ideal of finite sets, of principal ideals (or
trivial subgroups). This implies in particular that the coset equivalence relation of the subgroup
¬[g−1(1)] is a continuous preimage of an iterated Fubini product mod Fréchet of equality relations.
But Kanovei–Reeken [KR03] showed that the coset equivalence relations of many Borel ideals ⊆ 2ω,
including the summable ideal ¬[f−1(1)], do not admit a continuous (or even Borel) reduction to an
iterated Fubini product mod Fréchet of equalities.

Thus the topmost ≈ interval in Figure 4.53 contains at least two distinct clones. On the other
hand, by Proposition 4.57 there is no countable-arity relation R ⊆ 2ω that can distinguish between
such clones (i.e., that is preserved by lim inf but not by the indicator function of the summable
filter). So in some sense, while Theorem 4.61 does not completely classify all Borel clones with
finitary restriction ΛT0T

<ω
1 , the remaining classification problem is “strictly harder” than all of the

positive classifications we have obtained in this paper.
We expect there to be many other Borel clones between ⟨lim inf⟩B and ΛT0TB

1 , i.e., Borel filters
(or ideals) which are indistinguishable by countable-arity relations but are not equivalent up to
Rudin–Keisler reducibility and Fubini product. Note that the proofs in [KR03] use deep tools from
set-theoretic forcing and the theory of Borel equivalence relations (including ideas from Hjorth’s
turbulence theory [Hjo00]), but show a much stronger Borel non-reducibility result; there may be
an easier proof of Rudin–Keisler non-reducibility, which is all that is needed to yield distinct Borel
clones. See [Hru11], [Kan08], [Sol99] for more information on Borel filters and ideals.

4.D The k-ary intersection property

In this final section, we give some results on the structure of the left “side tube” [⟨MT0,<ωT
<ω
1 ⟩B,TB

0,2].
We will produce a large yet richly structured family of distinct Borel clones lying over each T<ω

0,k

and its variants, depicted in Figure 1.6 and in more detail in Figure 4.70(b).
Recall from Definition 3.6 the clone L0 = Pol{lim=0} ⊆ T0, of functions f : 2n→2 (n countable)

such that 0⃗ /∈ f−1(1). Recall also the clones T0,k = Pol{∧k=0} (0 < k < ω), of functions f such
that f−1(1) has the k-ary intersection property:

0⃗ /∈ f−1(1) ∧ · · · ∧ f−1(1)︸ ︷︷ ︸
k

=: f−1(1)∧k.

Here by A ∧B for two sets A, B ⊆ 2n, we mean {a⃗ ∧ b⃗ | a⃗ ∈ A, b⃗ ∈ B}.

Definition 4.63. Generalizing L0, for each 0 < k < ω and n ≤ ω, let

Ln
0,k :=

{
f : 2n→ 2

∣∣ the indicator function of f−1(1) ⊆ 2n is in T0,k

}

=
{

f : 2n→ 2
∣∣ 0⃗ /∈ f−1(1)∧k}

.

It is easily seen (using compactness of 2n) that this is

=
{

f : 2n→ 2
∣∣ ∄(x⃗r,q ∈ f−1(1))r<k,q<ω s.t. lim

q→∞
(x⃗0,q ∧ · · · ∧ x⃗k−1,q) = 0⃗

}
.
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Thus, we define the partial operation

lim∧k : 2ω ≅ 2k×ω −→ 2
x⃗ = (xi)i<ω = (xqk+r)r<k,q<ω 7−→ lim

q→∞
(xqk ∧ xqk+1 ∧ · · · ∧ xqk+k−1),

and put
L0,k := Pol{lim∧k=0}.

This recovers the above definition of Ln
0,k for n countable, and shows that L<ω1

0,k forms a clone.

Example 4.64. To illustrate, consider L0,3. Recalling Definition 2.15, for a function f : 2ω→ ω to
preserve the relation (lim∧3=0) means that for every ω × ω matrix, such as

0 1 1 1 1 1 1 1 1 · · · → f(011111111 · · · )
1 0 1 1 1 1 1 1 1 · · · → f(101111111 · · · )
1 1 0 1 1 1 1 1 1 · · · → f(110111111 · · · )
0 1 1 0 1 1 1 1 1 · · · → f(011011111 · · · )
1 0 1 1 0 1 1 1 1 · · · → f(101101111 · · · )
1 1 0 1 1 0 1 1 1 · · · → f(110110111 · · · )
0 1 1 0 1 1 0 1 1 · · · → f(011011011 · · · )
1 0 1 1 0 1 1 0 1 · · · → f(101101101 · · · )
1 1 0 1 1 0 1 1 0 · · · → f(110110110 · · · )
...

...
...

...
...

...
...

...
...

. . .
...

if in each original column, cofinally many blocks of 3 entries have at least one 0, then the same
must hold for the resulting column obtained by applying f to each row. (See Lemma 4.68 for an
application of the particular matrix shown above.)

Note that if this does not hold, then after passing to a subsequence of blocks of 3 rows, we may
assume that the resulting column of f(· · · )’s is 1⃗; then the rows will yield 3 sequences in f−1(1)
whose termwise meet converges to 0⃗. By passing to further subsequences, we may assume each of
these 3 sequences individually converges, and that the meet of the 3 limit strings is 0⃗.

Definition 4.65. More generally still, for 0 < k < ω, 0 ≤ t ≤ k, and n ≤ ω, let

Ln
0,k,t :=

{
f : 2n→ 2

∣∣ 0⃗ /∈ f−1(1)∧(k−t) ∧ f−1(1)∧t = f−1(1) ∧ · · ·︸ ︷︷ ︸
k−t

∧ f−1(1) ∧ · · ·︸ ︷︷ ︸
t

}
.

It is easily seen that this is

=



f : 2n→ 2

∣∣∣∣∣∣

∄(x⃗r ∈ f−1(1))r<k−t, (x⃗r,q ∈ f−1(1))k−t≤r<k,q<ω s.t.
lim

q→∞
(x⃗0 ∧ · · · ∧ x⃗k−t−1 ∧ x⃗k−t,q ∧ · · · ∧ x⃗k−1,q) = 0⃗



.

Thus, we define the partial operation

∧k−t ∧ lim∧t : 2ω ≅ 2(k−t)+t×ω −→ 2
x⃗ = (x0, . . . , xk−t−1, xqt+r)k−t≤r<k,q<ω 7−→ x0 ∧ · · · ∧ xk−t−1 ∧ lim

i→∞
(xqt+k−t ∧ · · · ∧ xqt+k−1),

and put
L0,k,t := Pol{∧k−t ∧ lim∧t=0}.
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The matrix involved is as in Example 4.64, except that there are k − t distinguished rows at the
top, then repeating blocks of t rows; a column obeys ∧k−t ∧ lim∧t=0 iff either one of the first k − t
entries is 0, or cofinally many of the repeating blocks contain at least one 0.

When t = 0, ∧k−t ∧ lim∧t becomes ∧k (with domain 2k, rather than 2ω); thus

L0,k,0 = T0,k (= T0 if k = 1).

On the other hand,
L0,k,k = L0,k (= L0 if k = 1).

We have the obvious relations

T0,ω ⊆ · · · ⊆ L0,k+2,k ⊆ L0,k+1,k ⊆ L0,k = L0,k,k ⊆ L0,k,k−1 ⊆ · · · ⊆ L0,k,1 ⊆ L0,k,0 = T0,k(4.66)

(see Figure 4.70(a)). Based on these inclusions, it is natural to also define

L0,0,0 := L0,0 := T0,0 := O2,

L0,<ω,t :=
⋂

k<ω

L0,k,t,

L0,<ω,<ω := L0,<ω :=
⋂

k<ω

L0,k =
⋂

t≤k<ω

L0,k,t.

Let also L1,k,t be the de Morgan dual of L0,k,t, consisting of all functions f preserving the relation
(∨k−t ∨ lim∨t=1) defined analogously, or (in countable arities) such that f−1(0) does not contain
k − t elements together with t elements in its closure with join 1⃗.

The poset of all L0,k,t clones is depicted in Figure 4.70(a). However , the L0,k,t’s do not form a
sublattice of CloB(2). For example, L0,3,1 ∩ L0,2 ⫌ L0,3,2; see Figure 4.70(b). In fact, there are no
nontrivial meet relations (that are not implied by the ordering) among the L0,k,t’s, as we now show.

Definition 4.67. Given functions fi : 2ni → 2 ∈ T1, i < k, their orthogonal disjunction is1

⊔

i<k

fi : 2
⊔

i<k ni={(i,j)|i<k,j<ni} −→ 2

(xi,j)i,j 7−→
∨

i<k

(
fi((xi,j)j) ∧

∧

i′ ̸=i

∧

j<ni′

xi′,j

)

= ∀k
2

((∧

j<i

xi,j

)
i<k

)
∧
∨

i<k

fi((xi,j)j).

(The binary operation ⊔ is associative up to a canonical permutation of the input bits.)
For example, when fi = 1 : 2→ 2 for all i, we get

⊔
i<k fi = ∀k

2 : 2k→ 2 (recall Definition 3.1).
More generally, when k < ω, f0 = · · · = fk−t−1 = 1 : 2→ 2, and fk−t = · · · = fk−1 = lim inf :

2ω→ 2, we may identify 2(k−t)+t×ω ≅ 2ω (assuming t > 0), so that
⊔

i<k fi becomes

∀k−t
2 ⊔ lim inf⊔t : 2ω ≅ 2(k−t)+t×ω −→ 2

x⃗ = (x0, . . . , xk−t−1, xqt+r)k−t≤r<k,q<ω 7−→ ∀k
2(x0, . . . , xk−t−1,

∧
q xqt+k−t, . . . ,

∧
q xqt+k−1) ∧ lim inf x⃗.

1Identifying f : 2n → 2 with the set f−1(1), a standard name from topology for ⊔ would be the wedge sum ∨; but
that notation conflicts with ordinary disjunction.
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When t = k, this becomes

lim inf⊔t : 2ω ≅ 2k×ω −→ 2
x⃗ = (xqk+r)r<k,q<ω 7−→ ∀k

2(
∧

q xqk, . . . ,
∧

q xqk+k−1) ∧ lim inf x⃗.

For example, when t = k = 2, we get

lim inf ⊔ lim inf : 2ω ≅ 22×ω −→ 2

x⃗ 7−→
(

lim inf
q→∞

x2q ∧
∧

q<ω

x2q+1
)
∨
(∧

q<ω

x2q ∧ lim inf
q→∞

x2q+1
)

.

Lemma 4.68. For any t ≤ k < ω, we have ∀k−t
2 ⊔ lim inf⊔t ∈MT1 ∩

⋂
t′≤k′<ω

k′<k or t′<t

L0,k′,t′ \ L0,k,t.

Proof. To show that ∀k−t
2 ⊔ lim inf⊔t /∈ L0,k,t, consider a matrix like the one in Example 4.64, which

is the case t = k = 3; each column obeys lim∧3 = 0, while each row obeys lim inf⊔3 = 1. When
t < k, we consider instead such a matrix split into blocks of t, and then prepend (k − t) rows and
columns which are all 1’s except for (k − t) 0’s down the diagonal; then we again get that each
column obeys ∧k−t ∧ lim∧t = 0 while each row obeys ∀k−t

2 ⊔ lim inf⊔t = 1.
It is clear that ∀k−t

2 ⊔ lim inf⊔t is in MT1. To show that it is in L0,k′,t′ , for k′ < k: it is easily
seen that (∀k−t

2 ⊔ lim inf⊔t)−1(1) has indicator function

(∀k−t
2 ⊔ (1ω)⊔t)(x⃗) = ∀k

2(x0, . . . , xk−t−1,
∧

q xqt+k−t, . . . ,
∧

q xqt+k−1),(∗)

which is in T0,k′ , whence the former function is in L0,k′ ⊆ L0,k′,t′ .
To show that it is in L0,k′,t′ , for t′ < t: let y⃗0, . . . , y⃗k′−t′−1 ∈ (∀k−t

2 ⊔ lim inf⊔t)−1(1) and
y⃗k′−t′ , . . . , y⃗k′−1 ∈ (∀k−t

2 ⊔ lim inf⊔t)−1(1), i.e., when x⃗ = y⃗k′−t′ , . . . , y⃗k′−1, all but 1 of the arguments
of the ∀k

2 on the right-hand side of (∗) above evaluate to 1. Since t′ < t, there must be some
k − t ≤ r < k such that

∧
q xqt+r = 1 whenever x⃗ = y⃗k′−t′ , . . . , y⃗k′−1. Since also lim infq xqt+r = 1

when x⃗ = y⃗0, . . . , y⃗k′−t′−1, it follows that y⃗0 ∧ · · · ∧ y⃗k′−1 has infinitely many 1’s. This shows
0⃗ /∈ (∀k−t

2 ⊔ lim inf⊔t)−1(1)∧(k′−t′) ∧ (∀k−t
2 ⊔ lim inf⊔t)−1(1)

∧t′

, hence ∀k−t
2 ⊔ lim inf⊔t ∈ L0,k′,t′ .

Recall that for a poset P , the free complete meet-semilattice P̂ generated by P is a complete
lattice equipped with an order-embedding P → P̂ whose image generates P under meets, and such
that every equation between meets of elements of P which holds in P̂ is implied by the ordering, in
the precise sense that any monotone map P →Q to another complete lattice Q admits a unique
meet-preserving extension P̂ →Q. Concretely, P̂ may be constructed as the poset of upward-closed
subsets U ⊆ P under reverse inclusion; we think of such U as the formal meet of its elements. If we
exclude U = ∅, then we obtain instead the free poset with nonempty meets

∧
i∈I , I ̸= ∅.

We claim that there are no nontrivial meet relations between the Borel clones LB
0,k,t, other than

those implied by the order relations (4.66) (depicted in Figure 4.70(a)). Formally, this means

Corollary 4.69. The closure of the Borel clones LB
0,k,t ∈ CloB(2), t ≤ k < ω, under nonempty

intersections yields the free complete nonempty-meet-semilattice generated by the poset depicted in
Figure 4.70(a), which is the poset of indices {(k, t) | t ≤ k < ω} under the coordinatewise reverse
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O2=L0,0,0=L0,0

T0,1=L0,1,0

L0,1,1=L0,1T0,2=L0,2,0

L0,2,1

L0,2,2=L0,2

T0,3=L0,3,0

L0,3,1

L0,3,2

L0,3,3=L0,3

T0,4=L0,4,0

L0,4,1

L0,4,2

L0,4,3

L0,4,4=L0,4

T0,<ω=L0,<ω,0

L0,<ω,1

L0,<ω,2

L0,<ω,3

L0,<ω,4

L0,<ω

TB
0,3

⟨T<ω
0,3 ⟩=⟨∀4

2,̸→⟩

L0,3=⟨∀4
2,

∧
, ̸→⟩

L0,3,2

L0,3,1L0,2

T0,3L0,2

L0,3,1

T0,3L0,2,1

T0,3L0

MT0,3TB
1

⟨MT0,3T
<ω
1 ⟩=⟨∀4

2⟩

ML0,3T1
=⟨∀4

2,
∧

,⌈∨⌉⟩

M�T0,3T1
=⟨∀4

2,
∧

,⌈∨⌉⟩

M�T0,3L1
=⟨∀4

2,⌈⌊∧⌋⌉⟩

ML0,3L1
=⟨∀4

2,⌈⌊∧⌋⌉,⌈∨⌉⟩

M�L0,3T1
=⟨∀4

2,⌈∨⌉⟩

ML0,3,2T1

ML0,3,2L1

M�T0,3T1

ML0,3,1L0,2T1

ML0,3,1L0,2L1

MT0,3L0,2T1

MT0,3L1

ML0,3,1T1

MT0,3L0,2,1T1

MT0,3L0T1

(a) Inclusion ordering among the clones L0,k,t, together
with an upward-closed set (above thick dotted line),
whose intersection L0,3,1L0,2 is not contained in any
clones below.

(b) Some Borel clones with finitary restrictions T<ω
0,3 ,MT0,3T

<ω
1

respectively, obtained by intersecting L0,k,t’s with clones from top
cube (Remark 4.21). The dashed blocks are exhaustive below
L0,3 and are isomorphic to corresponding intervals below T0,ω

(Figure 4.29). (Similar blocks over T0,3T
<ω
1 ,MT<ω

0,3 not shown.)

Figure 4.70: Examples of Borel clones over left “side tube” of Post’s lattice.

ordering ≥. In other words, we have an order-embedding

({∅ ̸= D ⊆ {(k, t) | t ≤ k < ω} | D is ≤-downward-closed},⊇) ↪−→ (CloB(2),⊆)

D 7−→
⋂

(k,t)∈D

LB
0,k,t.

This remains an embedding upon intersecting with M and/or T1.

Proof. If D′ ̸⊇ D are two such downward-closed sets of indices, then there is (k, t) ∈ D \ D′,
whence for all (k′, t′) ∈ D′, we have (k, t) ̸≤ (k′, t′); by Lemma 4.68, we have ∀k−t

2 ⊔ lim inf⊔t ∈
MT1 ∩

⋂
(k′,t′)∈D′ L0,k′,t′ \ L0,k,t.

The “cobweb” region of Figure 1.6, above L0,<ω, depicts all clones F obtained by intersecting
the L0,k,t’s (except for L0,0,0 = O2), which are isomorphic to the poset of all downward-closed
∅ ̸= D ⊆ {(k, t) | t ≤ k < ω} under reverse inclusion. Figure 4.70(a) depicts a typical such D (the
region above the thick dotted line), which determines the intersection clone F = L0,3,1L0,2 (since
these are the minimal clones above the dotted line). We may categorize such F as follows:

• If D contains a greatest (k, 0), then the intersection F =
⋂

(k′,t′)∈D L0,k′,t′ is contained in
L0,k,0 = T0,k but not L0,k+1,0 = T0,k+1, and contains L0,k,k = L0,k ⊇ ⟨T<ω

0,k ⟩ (since every
(k′, t′) ∈ D must be ≤ (k, k)). Thus F has finitary restriction T<ω

0,k .
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Note that there are precisely 2k such (k, 0) ∈ D /∋ (k + 1, 0). Indeed, D either contains
or does not contain (k, 1); the latter D are isomorphic to {D′ | (k − 1, 0) ∈ D′ /∋ (k, 0)},
via D 7→ D \ {(k, 0)}, as are the former D, via D 7→ {(k′ − 1, t′ − 1) | (k′, t′) ∈ D}. (In
Figure 4.70(a), there are 23 possible thick dotted lines starting between L0,3,0 and L0,4,0 and
moving right for 3 steps, since at each step it may move down or up.) Thus the poset of all D
such that (k, 0) ∈ D /∋ (k + 1, 0) may be partitioned into two isomorphic copies of the poset of
all D′ such that (k − 1, 0) ∈ D′ /∋ (k, 0). By induction, there are 2k such D.
For k = 3, the 23 = 8 such clones are depicted in Figure 4.70(b) (above L0,3). Note that the
“lower and upper halves”, below L0,3,1 or not, are each order-isomorphic to the 4 intersection
clones obtained for k = 2.

Corollary 4.71. For each k < ω, there are at least 2k Borel clones between LB
0,k and TB

0,k with
finitary restriction T<ω

0,k . Similarly for MT<ω
0,k ,T0,kT

<ω
1 ,MT0,kT

<ω
1 .

• On the other hand, if D contains (k, 0) for all k < ω, then the intersection F is contained in⋂
k<ω T0,k = T0,<ω, and contains L0,<ω ⊇ ⟨T<ω

0,<ω⟩. Thus F has finitary restriction T<ω
0,<ω.

We may further categorize such F , by considering whether or not there is a largest t < ω such
that (k, t) ∈ D for all k < ω. If not, then F = L0,<ω. If so, then F is contained in L0,<ω,t but
not L0,<ω,t+1. Then there is a least k ≥ t such that (k+1, t+1) /∈ D, which means F ⊆ L0,k,t+1
but F ̸⊆ L0,k+1,t+1. For fixed t, k, the poset of all such D is order-isomorphic to the poset of
D′ with (k − t − 1, 0) ∈ D /∋ (k − t, 0). (This means the thick dotted line in Figure 4.70(a)
starts between L0,<ω,t and L0,<ω,t+1, and moves up until just before it crosses L0,k,t+1, then
bends down.) So the poset of all D with {(k, 0) | k ∈ ω} ⊆ D, except for the maximum
D = {(k, t) | t ≤ k < ω}, may be partitioned into countably many mutually isomorphic
subsets, each of which may be partitioned into copies of {D′ | (k, 0) ∈ D′ /∋ (k + 1, 0)} for all
k. In particular, there are countably infinitely many such D.

Corollary 4.72. There are at least countably infinitely many distinct Borel clones above LB
0,<ω with

finitary restriction T<ω
0,<ω. Similarly for MT<ω

0,<ω,T0,<ωT
<ω
1 ,MT0,<ωT

<ω
1 .

Remark 4.73. It would be desirable if the recursive order-isomorphisms of the various kinds
of index sets D ⊆ {(k, t) | t ≤ k < ω} mentioned in the above discussion could be enhanced to
isomorphisms between the respective intervals of clones, perhaps by using certain “operators” on
functions along the lines of Sections 3.C to 3.E. For instance, perhaps the (Borel) clones between
L0,3,1,T<ω

0,3 (see Figure 4.70(b)) could be shown to be isomorphic to those between T0,2,T<ω
0,2 .

This would be beneficial to the remaining classification problem for the Borel clones in the
“side tubes”. We currently only know of the finite lower bound of 2k (plus a little bit; see below).
For instance, in stark contrast to what Figure 1.6 suggests, we currently cannot even rule out the
possibility of there being strictly more Borel clones over T<ω

0,2 than over T<ω
0,3 .

We now show a converse to Lemma 4.68: the functions ∀k−t
2 ⊔ lim inf⊔t are “minimal” /∈ L0,k,t.

This generalizes Lemma 4.54 (when k = t = 1), and is also analogous to Lemma 4.45.

Lemma 4.74. If f : 2n→ 2 ∈ O<ω1
2 \L0,k,t, then ∀k−t

2 ⊔ lim inf⊔t ∈ ⟨{f}∪MT0,ωTB
1 ⟩ = ⟨f,

∧
, ⌈∨⌉⟩.

Proof. Since f /∈ L0,k,t, there are x⃗0, . . . , x⃗k−t−1, (x⃗k−t,q)q<ω, . . . , (x⃗k−1,q)q<ω in f−1(1) such that

lim
q→∞

(x⃗0 ∧ · · · ∧ x⃗k−t−1 ∧ x⃗k−t,q ∧ · · · ∧ x⃗k−1,q) = 0⃗.
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We now modify these x⃗r, x⃗r,q’s to make them resemble points in (∀k−t
2 ⊔ lim inf⊔t)−1(1).

By passing to subsequences, we may assume that for each k − t ≤ r < k, the sequence (x⃗r,q)q

converges to some x⃗r ∈ 2n. Thus
∧

0≤r<k x⃗r = 0⃗.
In fact, we may assume that x⃗r,0 ≥ x⃗r,1 ≥ x⃗r,2 ≥ · · · for each k− t ≤ r < k. Indeed, this becomes

true if we replace each x⃗r,q with
∨

p≥q x⃗r,p (as in Lemma 4.7(d)), and the above limit remains 0⃗,
provided that each (x⃗r,q)q converges. Now these new points x⃗r,q may no longer be in f−1(1); but
since they are ≥ the original points, and there are only countably many, by Corollary 4.33 we may
replace f with another function in ⟨{f} ∪MT0,ωTB

1 ⟩ which is 1 at these new points.
Finally, we may assume that the x⃗r’s (= limq x⃗r,q for r ≥ k − t) have pairwise joins 1⃗. This

is by replacing each x⃗r (or x⃗r,q) with its join with
∨

s<r ¬x⃗s. Again, these new points are ≥ the
original ones, so by Corollary 4.33 we may replace f to make it 1 at these new points. We still have∧

r<k x⃗r = 0⃗; thus for each j < n, there is a unique r < k such that xr,j = 0.
Now define the variable substitution

g : 2(k−t)+t×ω −→ 2n

(y0, . . . , yk−t−1, yqt+r)k−t≤r<k,q<ω 7−→
({

yr if xr,j = 0 for r < k − t,
ymin{q<ω|xr,q,j=0}·t+r if xr,j = 0 for k − t ≤ r < k

)

j<n

.

Then g(y⃗) ∈ f−1(1) whenever y⃗ ∈ (∀k−t
2 ⊔ lim inf⊔t)−1(1), so ∀k−t

2 ⊔ lim inf⊔t ≤ f ◦ g ∈ ⟨f⟩.
Since clearly ∀k−t

2 ⊔ lim inf⊔t ∈ ⟨∧,
∨⟩ ⊆ ⟨MT0,ωTB

1 ∪ {1}⟩, by Corollary 3.20 it follows that
∀k−t

2 ⊔ lim inf⊔t ∈ ⟨{f} ∪MT0,ωTB
1 ⟩.

Corollary 4.75. For a <ω1-ary clone F ⊇MT0,ωTB
1 , either F ⊆ L0,k,t or ∀k−t

2 ⊔ lim inf⊔t ∈ F .

Corollary 4.76. Every <ω1-ary clone F ⊇MT0,ωTB
1 belongs to exactly one of the intervals

[⟨{∀k−t
2 ⊔ lim inf⊔t | (k, t) /∈ D}⟩B,

⋂
(k,t)∈D L<ω1

0,k,t]

for a downward-closed ∅ ̸= D ⊆ {(k, t) | t ≤ k < ω} (namely for D = {(k, t) | F ⊆ L0,k,t}).

Proof. For said D, for every (k, t) /∈ D, we have ∀k−t
2 ⊔ lim inf⊔t ∈ F by the preceding corollary.

And these intervals are disjoint for D ≠ D′: if without loss of generality D ̸⊆ D′, then for (k, t) ∈ D,
∀k−t

2 ⊔ lim inf⊔t is in every clone in the latter interval but none in the former by Lemma 4.68.

Remark 4.77. Each of the above intervals is nonempty, i.e., the lower bound is contained in the
upper bound, by Lemma 4.68; in fact there are at least 4 Borel clones in the interval, namely⋂

(k,t)∈D LB
0,k,t and its intersections with M and/or T1, or alternatively the clones generated by

{∀k−t
2 ⊔ lim inf⊔t | (k, t) /∈ D} together with TB

0,ω,T0,ωTB
1 ,MTB

0,ω,MT0,ωTB
1 .

We do not know if, within each combination of M and/or T1, the generators match the relations.
For example, we do not know if each inclusion

⟨TB
0,ω ∪ {∀k−t

2 ⊔ lim inf⊔t | (k, t) /∈ D}⟩B ⊆ ⋂(k,t)∈D LB
0,k,t

is in fact an equality. The only known cases are when D ⊆ {(0, 0), (1, 0), (1, 1)}, which yield the
clones over T<ω

0 ,O<ω
2 from Section 4.A; D = {(k′, t) | t ≤ k′ ≤ k} for fixed k < ω, which yield the

clones LB
0,k whose generators are determined by Example 4.80 below; and (2, 0) ∈ D /∋ (2, 1), which

yield a few sporadic clones over (M)T0,2(T1)<ω related to self-dual functions (see Corollary 4.96).
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In contrast to the analogous situation with the Borel clones over Λ<ω (Theorem 4.61), here we
do not even know if such generation occurs up to countable closure, i.e., up to approximation at
any given countably many input strings in 2ω.

The above dichotomies only apply to Borel clones F containing MT0,ωTB
1 , i.e., whose “projection”

F ∩ T0,ω to the “base of the side tube” as in Proposition 3.14 and Figure 3.28(b) is one of the top 4
nodes given by Corollary 4.28 (Figure 4.29). In order to extend these results to F for which F ∩T0,ω

is one of the other 11 clones in Corollary 4.28, we need to consider the interactions between the
L0,k,t and the clones from the top cube (Remark 4.21).

Proposition 4.78. For each k < ω, we have L<ω1
0,k = ↓⟨MT0,kT

<ω
1 ⟩B.

(Recall Definition 3.15 of the downward-closure ↓, as well as Notation 4.35 for the Borel
downward-closure ↓B. Note that it follows that LB

0,k = ↓B⟨MT0,kT
<ω
1 ⟩B.)

Proof. Clearly from its definition, L0,k is downward-closed, which shows ⊇. To show ⊆: let
f : 2n→ 2 ∈ L<ω1

0,k . If f = 0, then f ≤ π0 ∈ ⟨MT0,kT
<ω
1 ⟩; so suppose not. Then f−1(1) ⊆ 2n has

the k-ary intersection property, i.e., f−1(1)k ⊆ (2n)k is disjoint from (∧k : (2n)k→ 2n)−1(⃗0). Since
f−1(1) ⊆ 2n is a downward-directed intersection of clopen sets, by compactness of (2n)k, for some
such clopen f−1(1)(1) ⊆ A ⊆ 2n, Ak must also be disjoint from (∧k)−1(⃗0), i.e., A also has the k-ary
intersection property. Then the upward-closure ↑A ⊆ 2n is clearly a clopen upward-closed set still
with the k-ary intersection property, hence its indicator function g is in ⟨MT0,kT

<ω
1 ⟩ with f ≤ g.

Corollary 4.79. For each k < ω, there are 2 , 3 , 4 , 6 Borel clones contained in L0,k restricting to
the finitary clones T<ω

0,k ,T0,kT
<ω
1 ,MT<ω

0,k ,MT0,kT
<ω
1 respectively, namely generated by the respective

clones below T0,ω from Corollary 4.28 (Figure 4.29) together with the generator ∀k+1
2 ∈MT0,kT

<ω
1 .

The simplest (2) and most complicated (6) of these are depicted in Figure 4.70(b) (dashed
blocks), for k = 3; for the others, see Figure 1.6 (solid-shaded regions).

Proof. By Corollary 4.39 applied to H = ⟨MT0,kT
<ω
1 ⟩B.

Example 4.80. We get

ML0,kTB
1 = ⟨MT0,ωTB

1 ∪ {∀k+1
2 }⟩B = ⟨∧, ⌈∨⌉, ∀k+1

2 ⟩B,

LB
0,k = ⟨TB

0,ω ∪ {∀k+1
2 }⟩B = ⟨∧, ̸→,∀k+1

2 ⟩B

(as shown in Figure 4.70(b) for k = 3). Note that ∀k+1
2 = ∀k+1−0

2 ⊔ lim inf⊔0 (Definition 4.67), which
matches the candidate generating set for LB

0,k from Remark 4.77.

Remark 4.81. For k < ω, we have M�T
<ω1
0,k ⊆ L0,k, since for f ∈M<ω1� , f−1(1) is already closed

(by the dual of Lemma 4.14; cf. Lemma 4.17).

Corollary 4.82. L<ω1
0,<ω = ↓M�T0,<ωTB

1 .

Proof. ⊇ by intersecting the preceding remark over k; ⊆ because for f ∈ L<ω1
0,<ω, by Proposition 4.78

we may write f ≤ gk ∈ ⟨MT0,kT
<ω
1 ⟩B for each k, whence f ≤ ∧k gk ∈M�T0,<ωTB

1 .
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Remark 4.83. It follows from Corollary 4.39 that [M�T0,<ωTB
1 ,LB

0,<ω] ≅ [M�T0,ωTB
1 ,TB

0,ω], which
consists of 6 clones (see Figure 4.29).

If, as suggested in Remark 4.47, we had M�T0,<ωTB
1 = ⟨∀2⟩B, then together with Corollary 4.28

this would give a complete classification of all Borel clones in [⟨MT0,<ωT
<ω
1 ⟩B,LB

0,<ω].

The following is analogous to Lemma 4.25:

Lemma 4.84. For each 0 < k < ω, we have T0,kL
<ω1
1 ⊆ L0,k−1.

Proof. We have the following positive-primitive definition of the relation (lim∧k−1=0) (Defini-
tion 4.63), which we treat here as a subset of (2ω)k−1 rather than 2(k−1)×ω ≅ 2ω for clarity:

lim(x⃗0 ∧ · · · ∧ x⃗k−2) = 0 ⇐⇒ ∃y⃗ ∈ 2ω
(

(lim y⃗ = 1) ∧
∧

q<ω

(x0,q ∧ · · · ∧ xk−2,q ∧ yq = 0)
)

.

Analogously to Corollary 4.26, we may deduce from this that M�T
<ω1
0,k ⊆ L0,k−1. But in fact:

Lemma 4.85. For each k < ω, we have M�T
<ω1
0,k ⊆ L0,k,k−1.

Proof. We have the following positive-primitive definition of the relation (∧1 ∧ lim∧k−1=0) (Defini-
tion 4.65), which we treat here as a subset of 2× (2ω)k−1:

x0 ∧ lim(x⃗1 ∧ · · · ∧ x⃗k−1) = 0 ⇐⇒ ∃y⃗ ∈ 2ω
(( ↑∨ y⃗ = x0

)
∧
∧

q<ω

(x1,q ∧ · · · ∧ xk−1,q ∧ yq = 0)
)

.

These lemmas explain why in the right MT0,3T1 part of Figure 4.70(b), below the primary
“cobweb” of 8 clones [ML0,3T1,MT0,3T1], there is a “secondary row” of only the clones below L0,2
intersected with L1, and why below only L0,3,2, there is a “tertiary” intersection with M�. (Over
T0,kT1, there would only be the “secondary row”, whereas over MT0,k, there would only be the
“tertiary” intersection with M�; see Figure 1.6.)

We now show that such “secondary” and “tertiary” Borel clones indeed correspond to the obvious
“primary” clones in the “cobweb” suggested by Figures 4.70(b) and 1.6.

Proposition 4.86. For each 0 < k < ω, we have modularity isomorphisms

[⟨MT0,kT
<ω
1 ⟩B,T0,kL

<ω1
1 ] ≅ [⟨MT<ω

0,k ⟩B,T0,kL
<ω1
0,k−1]

F 7→ ⟨F ∪ {0}⟩<ω1

G ∩ L1 ←[ G,

[M�T0,kLB
1 ,T0,kL

<ω1
1 ] ≅ [M�T0,kTB

1 ,T0,kL0,k−1T
<ω1
1 ] ≅ [M�TB

0,k,T0,kL
<ω1
0,k−1]

F 7→ ⟨F ∪ {∧}⟩<ω1 7→ ⟨F ∪ {0}⟩<ω1 .

Proof. The latter two isomorphisms above follow from the first isomorphism above together with
the second isomorphism in Proposition 4.34.

For the first isomorphism above, note first that the map is well-defined, since the upper bound
of the left-hand interval is equal to T0,kL0,k−1L

<ω1
1 by Lemma 4.84. And it is an embedding by

the first isomorphism in Proposition 4.34, with image consisting of all clones G in the right-hand
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interval such that G ⊆ ↓(G ∩ L1); thus it suffices to prove this for all G in the right-hand interval.
For that, it suffices to prove that

∀g ∈ L<ω1
0,k−1, g ∈ ↓

(
⟨{g} ∪MT0,kT

<ω
1 ⟩ ∩ L1

)
.

By Proposition 4.78, L<ω1
0,k−1 = ↓⟨MT0,k−1T

<ω
1 ⟩B = ↓⟨∀k

2⟩B; thus it suffices to prove

⟨∀k
2⟩B ⊆

{
f ∈ ⟨MT0,k−1T

<ω
1 ⟩B

∣∣ ∀g ≤ f, g ∈ ↓
(
⟨{g} ∪MT0,kT

<ω
1 ⟩ ∩ L1

)}
.

Clearly the right-hand side contains each πi (g ≤ πi ∈ ⟨∅⟩ ∩ L1); thus it suffices (Lemma 2.8) to
prove that it is closed under left-composition with ∀k

2. Let f0, . . . , fk−1 : 2n → 2 belong to the
right-hand side, and let g ≤ ∀k

2(f0, . . . , fk−1). Then by the induction hypothesis, there are hi with

fi ∧ g ≤ hi ∈ ⟨{fi ∧ g} ∪MT0,kT
<ω
1 ⟩ ∩ L1

⊆ ⟨{g} ∪MT0,kT
<ω
1 ⟩ ∩ L1

by Corollary 3.20 since fi ∧ g ∈ ↓⟨{g} ∪MT0,kT
<ω
1 ⟩ ∩ ⟨{g} ∪MT0,kT

<ω
1 ∪ {1}⟩. Then

g ≤ ∀k+1
2 (g, h0, . . . , hk−1) ∈ ⟨{g} ∪MT0,kT

<ω
1 ⟩ ∩ L1,

since g = g ∧ ∀k
2(f0, . . . , fk−1) ≤ ∀k+1

2 (g, h0, . . . , hk−1), and h0 ∧ · · · ∧ hk−1 ≤ ∀k+1
2 (g, h0, . . . , hk−1)

whence ∀k+1
2 (g, h0, . . . , hk−1) is continuous at 1⃗.

Corollary 4.87. For any t < k < ω, we have L0,k,tL
<ω1
0,k−1 = ↓ML0,k,tL0,k−1L

<ω1
1 and L0,k,tLB

0,k−1 =
↓BML0,k,tL0,k−1LB

1 .

Proof. ⊇ is obvious; ⊆ follows from the above and that ⟨F∪{0}⟩<ω1 ⊆ ↓F for a <ω1-ary clone F ⊆M
(Corollary 3.19), as well as Proposition 4.40 in the Borel case to get L0,k,tLB

0,k−1 ⊆ ↓BML0,k,tLB
0,k−1 ⊆

↓B⟨ML0,k,tL0,k−1LB
1 ∪ {0}⟩B ⊆ ↓BML0,k,tL0,k−1LB

1 .

Thus for instance, in Figure 4.70(b), the interval [L0,3,T0,3L0,2] is isomorphic to the two parallel
intervals on the right. Note that the proof of Proposition 4.86 applies to all <ω1-ary clones in these
intervals, not just the 4 shown. This includes non-Borel <ω1-ary clones, as well as any potential
unknown Borel clones between the upper 3 shown and their proposed generators from Remark 4.77.

Remark 4.88. From the proof of Proposition 4.86, we may read off a procedure for obtaining an
upper bound h ∈ ⟨{g} ∪MT0,kT

<ω
1 ⟩ ∩ L1 for g ∈ T0,kL0,k−1, given an upper bound g ≤ f ∈ ⟨∀k

2⟩.
Namely, we induct on the construction of f ; whenever f = ∀k

2(f0, . . . , fk−1), then we recursively find
upper bounds hi for fi ∧ g, and then take

h := ∀k+1
2 (g, h0, . . . , hk−1) = g ∨ (h0 ∧ · · · ∧ hk−1).

By Corollary 3.20, it follows that the preimage of ⟨{g} ∪MT0,kT
<ω
1 ⟩ under the second isomorphism

in Proposition 4.86 is ⟨{h} ∪MT0,kT
<ω
1 ⟩ (since g is generated by the latter together with 0).

We may apply this to g = ∀k−t
2 ⊔ lim inf⊔t ∈ ML0,k,t−1L0,k−1T1 \ L0,k,t from Lemma 4.68, for

each 1 ≤ t ≤ k. An easy upper bound is f = ∀k
2(π0, . . . , πk−1), which gives

h = (∀k−t
2 ⊔ lim inf⊔t) ∨ (π0 ∧ · · · ∧ πk−1).
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For example, when k = t = 2 (cf. Definition 4.67), we get

h(x⃗) =
(

lim inf
q→∞

x2q ∧
∧

q<ω

x2q+1
)
∨
(∧

q<ω

x2q ∧ lim inf
q→∞

x2q+1
)
∨ (x0 ∧ x1).

Using the above, we may convert Lemma 4.74 into a “dichotomy” for such h:

Corollary 4.89. For any 0 < t ≤ k < ω and function f : 2n → 2 ∈ T0,kL
<ω1
1 \ L0,k,t, we have

(∀k−t
2 ⊔ lim inf⊔t) ∨ (π0 ∧ · · · ∧ πk−1) ∈ ⟨{f} ∪ML0,kLB

1 ⟩ = ⟨f,∀k+1
2 , ⌈⌊∧⌋⌉, ⌈∨⌉⟩.

Proof. The clone F := ⟨{f} ∪ML0,kLB
1 ⟩<ω1 ̸⊆ L0,k,tL1 corresponds via the first isomorphism in

Proposition 4.86 to ⟨F ∪ {0}⟩<ω1 ̸⊆ L0,k,t, which hence contains ⟨{∀k−t
2 ⊔ lim inf⊔t} ∪MLB

0,k⟩B by
Lemma 4.74, whence the original clone F contains h from the preceding remark.

(The generators ∀k+1
2 , ⌈⌊∧⌋⌉, ⌈∨⌉ for ML0,kLB

1 are by Corollary 4.79.)

This completes the description of the “secondary row” [ML0,3L1,MT0,3L1] in Figure 4.70(b),
again modulo the caveat (as in Remark 4.77) that we do not know if the candidate generators for
(M)L0,k,tLB

1 match the relations once t < k.
It remains to explain the single “tertiary” node M�T0,3T1 = M�L0,3,2L1 in Figure 4.70(b):

Proposition 4.90. For each 1 ≤ k < ω, we have L<ω1
0,k,k−1 = ↓M�T0,kTB

1 .

Proof. ⊇ by Lemma 4.85. Now let f : 2n→ 2 ∈ L<ω1
0,k,k−1; thus

0⃗ /∈ f−1(1) ∧ f−1(1)∧(k−1)
.

Using metrizability of 2n for n ≤ ω, write f−1(1) ⊆ 2n as a countable decreasing intersection of
open sets U0 ⊇ U1 ⊇ U1 ⊇ U2 ⊇ U2 ⊇ · · ·. Then for each x⃗ ∈ f−1(1), there is some i such that

0⃗ /∈ x⃗ ∧ Ui
∧(k−1)

, i.e., x⃗ /∈ ↓¬[Ui
∧(k−1)].

Let U :=
⋃

i(Ui \ ↓¬[Ui
∧(k−1)]). Then f−1(1) ⊆ U , and 0⃗ ̸∈ U∧k, since for x⃗0, . . . , x⃗k−1 ∈ U where

each x⃗j ∈ Uij \↓¬[Uij

∧(k−1)], with i0 ≤ i1, . . . , ik−1, we have x⃗0∧· · ·∧ x⃗k−1 ∈ x⃗0∧Ui1 ∧· · ·∧Uik−1 ⊆
x⃗0∧U

∧(k−1)
i0

/∋ 0⃗. So the indicator function g of the upward-closure of U obeys f ≤ g ∈M�T0,kT1.

Remark 4.91. The above argument is reminiscent of the T5 separation axiom in metrizable spaces.
As such, it fails for uncountable arities n > ω. Indeed, if 2n is not T5 (see e.g., [Kel75, 4.F]),
then taking A, B ⊆ 2n disjoint from each other’s closures but inseparable by open sets, and then
embedding 2n ↪→ 22+2n as an antichain as in Remark 4.31, with meet ̸= 0⃗ and join ̸= 1⃗ (e.g., take
only strings beginning with 01), the indicator function f of A ∪ ¬[B] ⊆ 22+2n will be in the n-ary
analogue of L0,2,1 (meaning 0⃗ ̸∈ f−1(1) ∧ f−1(1)) but not ≤ any Scott-continuous T0,2 function.

It follows from the above (and the fact that L0,k,k−1 ̸⊆ L0,k by Lemma 4.68) that the clones
M�T0,k(T1)B = M�L0,k,k−1(T1)B are not contained in L0,k, as shown in Figure 4.70(b).

However, in contrast to the situation with L1 (Proposition 4.86), here we do not know if every
subclone of MLB

0,k,k−1 outside L0,k corresponds to a subclone of M�LB
0,k,k−1. Nor do we have a

candidate generating set for M�LB
0,k,k−1, or know if there is a single function generating a minimal

subclone of M�L0,k,k−1 outside L0,k (analogous to lim inf⊔k ∨(π0 ∧ · · · ∧ πk−1) which is minimal in
ML0,k,k−1 \ L0,k from Corollary 4.89). An example of such a function is given by
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Example 4.92. The indicator function g : 2ω→ 2 of the set of all strings ≥ one of

11 00 00 00 · · · ,

10 11 00 00 · · · ,

01 11 00 00 · · · ,

10 10 11 00 · · · ,

01 01 11 00 · · · ,

...

is in M�L0,2,1TB
1 \ L0,2 (the strings 101010 · · · , 010101 · · · ∈ g−1(1) are disjoint). Note that this is

an example of an upper bound for lim inf ⊔ lim inf ∈ L0,2,1, as provided by Proposition 4.90.

The following summarizes all of the positive classification results we have obtained for Borel
clones lying over the left “side tube” of Post’s lattice 1.1, from this subsection and Section 4.B:

Theorem 4.93. For a Borel clone MT0,<ωT
<ω
1 = ⟨⌈∨⌉⟩<ω ⊆ F ⊆ OB

2 , one of the following holds.
These cases can all occur , and are mutually exclusive except for the boundary cases indicated in (e).

(a) For some coordinatewise downward-closed ∅ ̸= D ⊆ {(k, t) | t ≤ k < ω}, we have one of

TB
0,ω ⊆ ⟨{

∧
, ̸→} ∪ {∀k−t

2 ⊔ lim inf⊔t | (k, t) /∈ D}⟩B ⊆ F ⊆ ⋂(k,t)∈D L0,k,t,

T0,ωTB
1 ⊆ ⟨{

∧
, ⌈→⌉} ∪ {∀k−t

2 ⊔ lim inf⊔t | (k, t) /∈ D}⟩B ⊆ F ⊆ T1 ∩
⋂

(k,t)∈D L0,k,t,

MTB
0,ω ⊆ ⟨{

∧
, ⌈∨⌉, 0} ∪ {∀k−t

2 ⊔ lim inf⊔t | (k, t) /∈ D}⟩B ⊆ F ⊆M ∩⋂(k,t)∈D L0,k,t, or

MT0,ωTB
1 ⊆ ⟨{

∧
, ⌈∨⌉} ∪ {∀k−t

2 ⊔ lim inf⊔t | (k, t) /∈ D}⟩B ⊆ F ⊆MT1 ∩
⋂

(k,t)∈D L0,k,t

(Corollaries 4.76 and 4.28). The first two of these intervals of F are isomorphic, as are the
latter two (Proposition 4.34), which order-embed into the first two (Corollary 4.38); the image
includes all Borel clones defined as Pol of countably many Borel downward-closed relations
R ⊆ 2ω (Proposition 4.40). Moreover , we have exactly one of the following subcases.

(i) There is a greatest k < ω for which (k, 0) ∈ D, in which case ∀k+1
2 ∈ F ⊆ T0,k, so F has

finitary restriction T<ω
0,k ,T0,kT

<ω
1 ,MT<ω

0,k or MT0,kT
<ω
1 respectively. There are 2k of each

of the four types of intervals above in this case (Corollary 4.71).
(ii) We have (k, 0) ∈ D for all k < ω (so F ⊆ L0,<ω,0 = T0,<ω), and ∀2 = ∀ω

2 ∈ F . There are
countably infinitely many of each of the four intervals above in this case (Corollary 4.72),
the lowest one being [⟨∀2,

∧
, ⌈∨⌉⟩B,ML0,<ωLB

1 ] when D = {(k, t) | t ≤ k < ω}.
(iii) We have ∀2 ̸∈ F , in which case F = TB

0,ω,T0,ωTB
1 ,MTB

0,ω or MT0,ωTB
1 (Corollary 4.46).

(These are the “primary cobwebs” in Figures 4.70(b) and 1.6.)

(b) For some t < k < ω, F has finitary restriction T0,kT
<ω
1 or MT0,kT

<ω
1 , and obeys respectively

L0,kLB
1 ⊆ ⟨∀k+1

2 , ⌈∨⌉, ⌈→⌉, (∀k−t−1
2 ⊔ lim inf⊔(t+1)) ∨ (π0 ∧ · · · ∧ πk−1)⟩B ⊆ F ⊆ L0,k,tL0,k−1L1 or

ML0,kLB
1 ⊆ ⟨∀k+1

2 , ⌈⌊∧⌋⌉, ⌈∨⌉, (∀k−t−1
2 ⊔ lim inf⊔(t+1)) ∨ (π0 ∧ · · · ∧ πk−1)⟩B ⊆ F ⊆ML0,k,tL0,k−1L1
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(Corollary 4.89). These intervals are isomorphic to the second and fourth intervals in (a)(i),
for (k, 0), (k − 1, k − 1) ∈ D /∋ (k + 1, 0), (k, k) (Proposition 4.86). (These are the “secondary
rows” below the “cobwebs” in Figures 4.70(b) and 1.6.)

(c) For some 0 < k < ω, F has finitary restriction MT<ω
0,k or MT0,kT

<ω
1 , and obeys respectively

M�LB
0,k = ⟨∀k+1

2 , ⌈∨⌉, 0⟩B ⫋ F ⊆M�TB
0,k = M�LB

0,k,k−1 or

M�L0,kTB
1 = ⟨∀k+1

2 , ⌈∨⌉⟩B ⫋ F ⊆M�T0,kTB
1 = M�L0,k,k−1LB

1 .

These two sets of F are isomorphic to each other (Proposition 4.86), and embed into the third
and fourth intervals in (a)(i) for D = {(k′, t′) | (k′, t′) ≤ (k, k − 1)} (Corollary 4.38) with
cofinal image (Proposition 4.90). (These are the “tertiary” nodes in Figures 4.70(b) and 1.6.)

(d) F has finitary restriction MT<ω
0,<ω or MT0,<ωT

<ω
1 , and obeys respectively

⟨∀2, 0⟩B ⊆ F ⊆M�TB
0,<ω or

⟨∀2⟩B ⊆ F ⊆M�T0,<ωTB
1 .

These two intervals are isomorphic (Proposition 4.34), and they embed into the respective
intervals below L0,<ω in (a)(ii) (Corollary 4.38) with cofinal image (Corollary 4.82).

(e) F is equal to one of the precisely 2 , 3 , 4 , 6 Borel clones contained in L0,k restricting
to the finitary clones T<ω

0,k ,T0,kT
<ω
1 ,MT<ω

0,k ,MT0,kT
<ω
1 respectively, for some 0 ≤ k < ω

(Corollary 4.79) or k = ω (Corollary 4.28; by convention L0,ω := T0,ω). These are all
isomorphic as k varies, and are obtained by adjoining the generator ∀k+1

2 to the respective
clone below T0,ω from Figure 4.29 for k < ω, or alternately by intersecting L0,k with the
respective clone above ⟨MT<ω

1 ⟩B in the top cube from Section 4.A (Proposition 3.14).
For each k, and in each of the four cases (M and/or T1), the top clone (M)L0,k(T1)B here
coincides with one of the extreme cases from (a)(i) or (iii), where (k, k) ∈ D /∋ (k + 1, 0) (or
D = {(k, t) | t ≤ k < ω}, when k = ω).

Note that in each of the “imprecise” cases (a)–(d) above, except for (c), we have examples
of “minimal” functions contained in all clones in the interval. If these can be shown to generate
the upper bound of the interval, then the entire interval would collapse. We know this to happen
only in the “bottommost” cases covered by (e), in the top cube cases k ≤ 1 from Section 4.A,
and in a few sporadic k = 2 cases; see below. Also, in each of the “topmost” cases (1, 1) ̸∈ D in
(a), yielding an interval ∀1−1

2 ⊔ lim inf⊔1 = lim inf ∈ F ⊆ T0,k (or ⊆ T0,<ω when k = ω), we know
by Proposition 4.57 that the interval collapses up to taking countable closure, i.e., every <ω1-ary
function in T0,k can be approximated at any countably many inputs by a Borel function built from
the candidate generators.

We conclude by relating the partial classification of Borel clones over MT<ω
0,2 given by the above,

to the Borel self-dual clones restricting to DM<ω, the last of the 3 finitary self-dual, non-affine
clones (3.32) which corresponds to MT<ω

0,2 via the self-dualizing operator β (Proposition 3.31).
Recall that for the other 2 such finitary self-dual clones, D<ω and DT<ω

0 , the Borel clones were
fully classified using β in Corollary 4.22; recall from there the definition of β(

∧
) ∈ DL0. Note that,

in terms of Definition 4.67, β(
∧

) may be written as

β(
∧

) = 1 ⊔∨ ≥ 1 ⊔ lim inf .
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It follows by Corollary 3.20 that 1 ⊔ lim inf ∈ ⟨β(
∧

), 0⟩. It is also easily seen that

β(
∧

)(x⃗) = (1 ⊔ lim inf)(x0, x1,∃3
2(x0, x1, x2),∃3

2(x0, x1, ∃3
2(x0, x2, x3)), . . . ),(4.94)

∃3
2(x, y, z) = β(

∧
)(x, y, z, y, z, y, z, . . . ).

Thus
⟨β(
∧

), 0⟩B = ⟨1 ⊔ lim inf,∃3
2, 0⟩B

are two equivalent versions of the candidate generators for MT0,2LB
0 given by Corollary 4.76 (for

the downward-closed set of indices D = {(2, 0), (1, 0), (1, 1), (0, 0)}).

Proposition 4.95. MT0,2LB
0 = ⟨β(

∧
), 0⟩B.

Proof. Let f ∈MT0,2LB
0 ; then f ≤ π0∨· · ·∨πm−1 for some m < ω, and we must show f ∈ ⟨β(

∧
), 0⟩.

We induct on m. If m = 0, then f = 0. Now suppose the claim holds for m, and f ≤ π0 ∨ · · · ∨ πm.
Then (the cross-section) f0 ≤ π0 ∨ · · · ∨ πm−1, so f0 ∈ ⟨β(

∧
), 0⟩B, and so β(f0) ∈ ⟨β(

∧
), 0⟩, since

⟨β(
∧

), 0⟩ is the clone containing 0 corresponding via Proposition 3.31 to ⟨β(∧)⟩ ⊆ D, hence is closed
under β. But since f ∈MT0,2, we have f ≤ β(f0), thus f ∈ ⟨β(

∧
), 0⟩ by Corollary 3.20.

Corollary 4.96. We have:

(a) T0,2LB
0 = ⟨β(

∧
), ̸→⟩B, T0,2L0TB

1 = ⟨β(
∧

),
∧

, ⌈→⌉⟩B, and MT0,2L0TB
1 = ⟨β(

∧
),
∧⟩B.

(b) T0,2L0LB
1 = ⟨β(

∧
), ⌈→⌉⟩B and MT0,2LB

1 = ⟨β(
∧

),∧⟩B.

(c) TB
0,2 = ⟨lim inf, ∃3

2, ̸→⟩B and MTB
0,2 = ⟨lim inf, ∃3

2, 0⟩B.

Proof. The first equality in (a) follows from Proposition 4.40, Corollary 3.20, and Proposition 4.95;
the rest then follows from Proposition 4.34.

(b) follows from Proposition 4.86.
(c): Note first that from lim inf, ∃3

2, we easily get 1 ⊔ lim inf, via a formula similar to (4.94),
which then yields β(

∧
); so the two generated clones in question contain β(

∧
) and ̸→, 0 respectively,

hence contain all of (M)T0,2LB
0 by Proposition 4.95 and (a). Now for f ∈ (M)TB

0,2, we have
f = lim infm→∞(f ∧ (π0 ∨ · · · ∨ πm−1)) with each f ∧ (π0 ∨ · · · ∨ πm−1) ∈ (M)T0,2LB

0 .

Thus among the Borel clones with finitary restriction T<ω
0,2 and its variants, we have the curious

situation (see Figure 1.6) that sufficiently small (below L0,2) or large (above MT0,2L0L1) such clones
are fully classified (solid-shaded regions in 1.6), whereas the intermediate clones, L0,2,1 and its
variants, remain open (hatch-shaded regions in 1.6). Nonetheless, this is enough to yield

Corollary 4.97. There are precisely 3 Borel clones on 2 restricting to DM<ω (see Figure 4.23):

• DMB = PolB{¬,≤} = ⟨β(lim inf)⟩B,

• DMLB
0 = DMLB

1 = PolB{¬,≤, lim=0} = ⟨β(
∧

)⟩B,

• ⟨DM<ω⟩B = PolB{¬,≤, lim} = ⟨∃3
2⟩B,

where
β(lim inf)(x0, x1, . . . ) =

(
x0 ∧ lim sup

i→∞
xi

)
∨ lim inf

i→∞
xi.
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Proof. By Proposition 3.31 (and the fact that DM<ω = ⟨β(MT<ω
0,2 )⟩<ω), such Borel clones are

⟨β(G)⟩B for all Borel clones G restricting to MT<ω
0,2 which are closed under β. If G contains a

discontinuous function g, then by Lemma 4.13, either g /∈M�, or g /∈M� in which case clearly from
Definition 3.29, β(g) /∈ M�; thus by Corollary 4.30,

∧ ∈ G, so β(
∧

) ∈ G, so by Proposition 4.95,
MT0,2LB

0 ⊆ G, and so by Lemma 4.54 and Corollary 4.96(c), either G = MT0,2LB
0 or G = MTB

0,2. So

MTB
0,2 = ⟨lim inf,∃3

2, 0⟩B, MT0,2LB
0 = ⟨β(

∧
), 0⟩B, ⟨MT<ω

0,2 ⟩B = ⟨∃3
2, 0⟩B

are the 3 Borel clones lying over MT<ω
0,2 which are closed under β; these are easily seen to correspond

via Proposition 3.31 to the above clones lying over DM<ω.
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