On the canonical Dicks–Dunwoody structure tree

Ruiyuan Chen

Let $G \subseteq X^2$ be a connected simple undirected graph. By an (oriented edge) **cut**, we mean a partition of the vertex set $X = H \sqcup \neg H$, which we may identify with the first half $H \subseteq X$, such that the edge boundary between them $\delta H := G \cap (H \times \neg H)$ is finite. The collection of all cuts forms a Boolean algebra $\mathcal{H}_{\delta < \infty} = \mathcal{H}^G_{\delta < \infty}(X) \subseteq 2^X$. Two cuts $H, K \in \mathcal{H}_{\delta < \infty}$ are **nested** if one of $H, \neg H$ is disjoint from one of $K, \neg K$.

In [DD89], Dicks and Dunwoody showed that for any connected graph (X, G), there exists a "canonical" nested family of cuts $\mathcal{H}_{\approx} \subseteq \mathcal{H}_{\delta < \infty}$ generating all of $\mathcal{H}_{\delta < \infty}$ under finite Boolean combinations. Indeed, more is true: for each $n \in \mathbb{N}$, every cut with edge boundary of size $\leq n$ is a finite Boolean combination of such cuts which are in \mathcal{H}_{\approx} . The significance of nested families of cuts lies in a Stone-type duality with their trees of "ultrafilters", sometimes called *structure trees*, that forms part of the machinery around Stallings' theorem on ends of groups. The Dicks–Dunwoody result has seen numerous applications and generalizations, including in recovering Stallings' theorem and strengthenings thereof; see e.g., [Rol98], [DW13], [DK15], [Ham18].

The object of this note is to give a self-contained exposition of a version of the Dicks–Dunwoody construction. Our main goal is to clarify the precise sense in which the construction is "canonical". The construction as written in [DD89] produces a nested family which is "canonical" insofar as it is invariant under all automorphisms of the graph G; however, it is arguably "non-canonical" in that it appeals to Zorn's lemma (albeit in an automorphism-invariant way). Another way to say it is that the construction does not work in a uniform way across all graphs G. A different version of the construction given by Dicks [Dic18] is canonical in this stronger sense, avoiding Zorn's lemma, but only for quasi-transitive graphs (it is based on a well-ordering defined by Bergman [Ber68], which does extend to all graphs, but again depending on a well-ordering of the automorphism orbits). Finally, Dunwoody [Dun17] gave a construction which is fully canonical and works in all graphs (indeed in all networks).

We prove the following version of the Dicks–Dunwoody result, which is based on a simplified version of Dunwoody's construction, and formalizes the sense in which it is "canonical", via definability in the countably infinitary logic $\mathcal{L}_{\omega_1\omega}$ (see e.g., [Mar16]):

Theorem 1 (Dicks–Dunwoody). For any connected graph (X, G), we may define a canonical nested family of connected and coconnected cuts $\mathcal{H}_{\approx} \subseteq \mathcal{H}_{\delta < \infty}$, such that for each $n \in \mathbb{N}$, every cut with boundary of size $\leq n$ is a finite Boolean combination of such cuts which are in \mathcal{H}_{\approx} ; and the boundaries of such cuts in \mathcal{H}_{\approx} are defined by an $\mathcal{L}_{\omega_1\omega}$ formula $\phi_n((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$ in the language of graphs, not depending on the graph (X, G).

In fact, every ingredient used in our construction appeared already in [DD89] in some form; however, we apply them in a different order, that is inspired by the approach to Stallings' theorem due to Krön [Krö10] (see also [Tse20] for an exposition of this proof).

1 Nestedness and corners

It is useful to formulate the basic properties of nestedness in the context of an abstract Boolean algebra $A = (A, \land, \lor, \top, \bot, \neg)$. For $a, b \in A$, their **corners** are

$$a \boxplus b := \{a \land b, a \land \neg b, \neg a \land b, \neg a \land \neg b\}.$$

We call $a \wedge b$, $\neg a \wedge \neg b$ opposite corners; same for $a \wedge \neg b$, $\neg a \wedge b$. We call a, b nested if $\bot \in a \boxplus b$, i.e., one of $a, \neg a$ is disjoint from one of $b, \neg b$; we denote this by

$$a \times b :\iff \bot \in a \boxplus b.$$

We write

$$a^{\times} := \{ b \in A \mid a \times b \}.$$

For a subset $B \subseteq A$, we write $B^{\sim} := \bigcap_{b \in B} b^{\sim}$. We call B **nested** if its elements are pairwise nested.

Lemma 2 (see [DD89, proof of 2.9], [Krö10, 3.1], [Tse20, 3.14], [Dun17, 2.8]). For any $a, b, c \in A$, if $a \times c$ and $b \times c$, then either $a \wedge b \times c$ or $a \vee b = \top$ (so $a \times b$). In other words,

$$a \lor b \neq \top \implies a \stackrel{\sim}{} \cap b \stackrel{\sim}{} \subseteq (a \land b) \stackrel{\sim}{}.$$

Hence

$$a \not\asymp b \implies a^{\times} \cap b^{\times} \subseteq (a \boxplus b)^{\times}.$$

Proof. If one of a, b is disjoint from one of $c, \neg c$, then clearly so is $a \wedge b$, so $a \wedge b \approx c$. Otherwise, each of $\neg a, \neg b$ is disjoint from one of $c, \neg c$. If both are disjoint from c or from $\neg c$, then so is $\neg (a \wedge b) = \neg a \vee \neg b$, so $a \wedge b \approx c$; otherwise, $a \vee b = \top$. The last claim follows by negating a, b. \square

Remark 3 (see [Krö10, 3.1], [Tse20, 3.15]). For any $a, b \in A$, clearly

$$a^{\approx}, b^{\approx} \subseteq (a \wedge b)^{\approx} \cup (\neg a \wedge \neg b)^{\approx}$$

(e.g., disjointness from a implies disjointness from $a \wedge b$). Hence for any opposite corners c, d of a, b,

$$a \stackrel{\sim}{\sim} \cup b \stackrel{\sim}{\sim} \subset c \stackrel{\sim}{\sim} \cup d \stackrel{\sim}{\sim}$$
.

2 Subfamilies of cuts

Now let (X,G) be a connected graph, where $G\subseteq X^2$ is the edge set. For $A,B\subseteq X$, define

$$\delta(A, B) := G \cap (A \times B),$$
 $\delta A := \delta(A, \neg A);$

thus δA is the outgoing edge boundary of A. We have $\delta A=\varnothing$ iff A is **trivial**, i.e., \varnothing or X. We define the following subsets of 2^X (denoted by decorations of $\mathcal H$ for "half-space"):

- $\mathcal{H}_{\delta<\infty} = \mathcal{H}^G_{\delta<\infty}(X) := \{H \subseteq X \mid |\delta H| < \infty\}$, the Boolean algebra of **cuts**.
- $\mathcal{H}_{\delta \le n} := \{ H \subseteq X \mid |\delta H| \le n \} \text{ for each } n \in \mathbb{N}.$
- $\mathcal{H}_{conn} := \{ H \subseteq X \mid H, \neg H \text{ are connected (or empty)} \}.$

Lemma 4 (see [DD89, 2.7], [Krö10, 2.1], [Tse20, 3.8], [CPTT25, 5.4]). For any $n \in \mathbb{N}$ and $x, y \in X$, there are only finitely many $H \in \mathcal{H}_{\delta \leq n} \cap \mathcal{H}_{\mathsf{conn}}$ separating x, y, i.e., such that $x \in H \not\ni y$.

Proof. Clearly, $\mathcal{H}_{\delta \leq n} \subseteq 2^X$ is closed in the product topology; and for any $H \in \mathcal{H}_{\delta \leq n}$, the clopen neighborhood $\{K \in 2^X \mid \delta H \subseteq \delta K\}$ isolates H from all $H \neq K \in \mathcal{H}_{\mathsf{conn}}$. Thus $\mathcal{H}_{\delta \leq n} \cap \mathcal{H}_{\mathsf{conn}} \subseteq \mathcal{H}_{\delta \leq n}$ is a closed subset, in which every nontrivial point $H \neq \emptyset, X$ is isolated; and so the set of $x \in H \not\ni y$ is a compact set of isolated points, hence finite.

Corollary 5 (see [DD89, 2.8], [Tse20, 3.11], [CPTT25, 5.9]). For any $n \in \mathbb{N}$ and $H \in \mathcal{H}_{\delta < \infty}$, there are only finitely many $K \in \mathcal{H}_{\delta \le n} \cap \mathcal{H}_{\mathsf{conn}}$ which are non-nested with H.

Proof. If H, K are non-nested, then K separates two boundary vertices of H.

Lemma 6 (see [DD89, proof of 2.4], [Krö10, 2.2], [Tse20, 3.17], [Dun17, 2.7]). Suppose $H, K \in \mathcal{H}_{\delta < \infty}$ have a pair of opposite corners whose boundaries have sizes at least those of H, K respectively. Then these corners have boundaries of the same sizes as those of H, K respectively.

Proof. By negating/swapping H, K if necessary, we may assume that

$$|\delta(H \cap K)| \ge |\delta H|,$$
 $|\delta(\neg H \cap \neg K)| \ge |\delta K|.$

But also (see Figure 7)

$$\begin{split} |\delta H| + |\delta K| &= |\delta(H, \neg H)| + |\delta(K, \neg K)| \\ &\geq \left(|\delta(H \cap K, \neg H \cap K)| + |\delta(H \cap K, \neg H \cap \neg K)| + |\delta(H \cap \neg K, \neg H \cap \neg K)| \right) \\ &+ \left(|\delta(H \cap K, H \cap \neg K)| + |\delta(H \cap K, \neg H \cap \neg K)| + |\delta(\neg H \cap K, \neg H \cap \neg K)| \right) \\ &= \left(|\delta(H \cap K, \neg H \cap K)| + |\delta(H \cap K, \neg H \cap \neg K)| + |\delta(H \cap K, H \cap \neg K)| \right) \\ &+ \left(|\delta(H \cap \neg K, \neg H \cap \neg K)| + |\delta(H \cap K, \neg H \cap \neg K)| + |\delta(\neg H \cap K, \neg H \cap \neg K)| \right) \\ &= |\delta(H \cap K)| + |\delta(\neg H \cap \neg K)|. \end{split}$$

Thus both of the above inequalities are equalities.

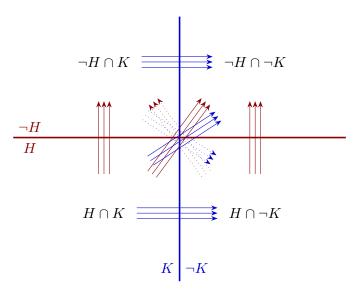


Figure 7: Counting edges between corners of a pair of cuts.

3 Irreducible cuts

For any cut $H \in \mathcal{H}_{\delta < \infty}$, using Corollary 5, define the **rank** of H to be

$$\rho(H) := (|\delta H|, |\varepsilon H|) \in \mathbb{N}^2$$

where

$$\varepsilon H:=\mathcal{H}_{\delta\leq |\delta H|}\cap \mathcal{H}_{\mathsf{conn}}\cap (\mathcal{H}_{\delta<|\delta H|}\cap \mathcal{H}_{\mathsf{irr}})^{\asymp}\setminus H^{\asymp}.$$

We order ranks in \mathbb{N}^2 lexicographically. Call $H \in \mathcal{H}_{\delta < \infty}$ reducible if either H or $\neg H$ is a union of two cuts of strictly smaller rank, **irreducible** otherwise. Put

- $\mathcal{H}_{\rho \leq (n,k)} := \{ H \in \mathcal{H}_{\delta < \infty} \mid \rho(H) \leq (n,k) \} \text{ for each } (n,k) \in \mathbb{N}^2.$
- $\mathcal{H}_{irr} := \{ H \in \mathcal{H}_{\delta < \infty} \mid H \text{ is irreducible} \}.$

(Thus, the notions of rank and irreducibility are defined simultaneously by induction on $|\delta H|$.)

It is easily seen that $\rho(H) = \rho(\neg H)$, and $H \in \mathcal{H}_{irr} \iff \neg H \in \mathcal{H}_{irr}$. Hence, $\mathcal{H}_{irr} \subseteq \mathcal{H}_{conn}$, since if H has ≥ 2 components then they have strictly smaller boundary. Note also that

$$\langle \mathcal{H}_{\rho \leq (n,k)} \rangle = \langle \mathcal{H}_{\rho \leq (n,k)} \cap \mathcal{H}_{\mathsf{irr}} \rangle,$$

where $\langle - \rangle$ denotes the generated Boolean algebra, by an easy induction on (n,k). Thus

(8)
$$\langle \mathcal{H}_{\delta \leq n} \rangle = \bigcup_{k} \langle \mathcal{H}_{\rho \leq (n,k)} \rangle = \bigcup_{k} \langle \mathcal{H}_{\rho \leq (n,k)} \cap \mathcal{H}_{irr} \rangle = \langle \mathcal{H}_{\delta \leq n} \cap \mathcal{H}_{irr} \rangle.$$

Theorem 9. \mathcal{H}_{irr} is nested, hence $\mathcal{H}_{\approx} := \mathcal{H}_{irr}$ forms the desired family of cuts in Theorem 1.

Proof. We show that any $H, K \in \mathcal{H}_{irr}$ are nested, by induction on $\max(|\delta H|, |\delta K|)$. Negating H and/or K if necessary, we may assume $H \cap K$ is a corner of H, K of minimal rank. Then the opposite corners $H \setminus K, K \setminus H$ have rank $\geq \rho(H \cap K)$, whence by irreducibility of H, K,

(*)
$$\rho(H \setminus K) \ge \rho(H), \qquad \qquad \rho(K \setminus H) \ge \rho(K).$$

In particular, we have the corresponding inequalities for $|\delta(-)|$. By Lemma 6, it follows that

$$|\delta(H \setminus K)| = |\delta H|,$$
 $|\delta(K \setminus H)| = |\delta K|.$

Hence by (*),

$$|\varepsilon(H \setminus K)| \ge |\varepsilon H|, \qquad |\varepsilon(K \setminus H)| \ge |\varepsilon K|.$$

Suppose first that $|\delta H| \neq |\delta K|$, without loss of generality $|\delta H| > |\delta K|$. If $H \not \approx K$, then

$$\varepsilon(H \setminus K) = \mathcal{H}_{\delta \leq |\delta H|} \cap \mathcal{H}_{\mathsf{conn}} \cap (\mathcal{H}_{\delta < |\delta H|} \cap \mathcal{H}_{\mathsf{irr}})^{\asymp} \setminus (H \setminus K)^{\asymp}$$

$$\subseteq \varepsilon H = \mathcal{H}_{\delta < |\delta H|} \cap \mathcal{H}_{\mathsf{conn}} \cap (\mathcal{H}_{\delta < |\delta H|} \cap \mathcal{H}_{\mathsf{irr}})^{\asymp} \setminus H^{\asymp}$$

by Lemma 2, the fact that every cut in $\varepsilon(H \setminus K)$ is nested with $K \in \mathcal{H}_{\delta < |\delta H|} \cap \mathcal{H}_{irr}$, and that $K \in (\mathcal{H}_{\delta < |\delta H|} \cap \mathcal{H}_{irr})^{\times} \cap (H \setminus K)^{\times} \setminus H^{\times}$ by the induction hypothesis, contradicting (\dagger) .

Now suppose that $|\delta H| = |\delta K|$, but $H \not\simeq K$. By Lemma 2 as above, every cut in $\varepsilon(H \setminus K)$ is non-nested with H or with K, and likewise for every cut in $\varepsilon(K \setminus H)$; hence

$$\varepsilon(H\setminus K)\cup\varepsilon(K\setminus H)\subsetneq \varepsilon H\cup\varepsilon K,$$

with the inclusion being strict again because $K \in (\mathcal{H}_{\delta < |\delta H|} \cap \mathcal{H}_{irr})^{\times} \cap (H \setminus K)^{\times} \setminus H^{\times}$, here using the previous case (instead of the induction hypothesis). But also by Remark 3,

$$\varepsilon(H \setminus K) \cap \varepsilon(K \setminus H) \subseteq \varepsilon H \cap \varepsilon K.$$

Taking cardinalities and adding yields $|\varepsilon(H \setminus K)| + |\varepsilon(K \setminus H)| < |\varepsilon H| + |\varepsilon K|$, contradicting (†). \square

Remark 10. We may "relativize" the above construction to any Boolean subalgebra $\mathcal{A} \subseteq \mathcal{H}_{\delta < \infty}$ with the property that whenever $H \in \mathcal{A}$, then every connected component of H is in \mathcal{A} . The definitions of rank $\rho_{\mathcal{A}}$, $\varepsilon_{\mathcal{A}}$, and irreducible cuts $\mathcal{A}_{irr} \subseteq \mathcal{A}$ are the same as above, but considering only cuts in \mathcal{A} ; the assumption on \mathcal{A} guarantees that $\mathcal{A}_{irr} \subseteq \mathcal{A}_{conn} := \mathcal{A} \cap \mathcal{H}_{conn}$ as above.

For example, let \mathcal{C} be any family of connected subsets of X, or more generally closed connected subsets of the end compactification $\widehat{X} = \widehat{X}^G$ (i.e., the Stone space of $\mathcal{H}_{\delta<\infty}$, where a subset $C \subseteq \widehat{X}^G$ is connected if every clopen set $\widehat{H} \subseteq \widehat{X}$ for $H \in \mathcal{H}_{\delta<\infty}$ either contains C, or is disjoint from C, or has a boundary edge between two vertices in C). Then the family $\mathcal{A}_{\mathcal{C}} \subseteq \mathcal{H}_{\delta<\infty}$ of cuts that either contain or are disjoint from each element of \mathcal{C} forms a Boolean algebra with the above property. Thus, we get a canonical nested subfamily generating $\mathcal{A}_{\mathcal{C}}$. This applies for instance to $\mathcal{C} = \{C, D\}$ for two disjoint closed connected sets $C, D \subseteq \widehat{X}$ (e.g., C = a geodesic between two ends, D = a third end), yielding a canonical nested generating family of cuts separating C, D.

4 $\mathcal{L}_{\omega_1\omega}$ -definability of cuts

To finish, we should verify that the construction of \mathcal{H}_{irr} is indeed definable in the countably infinitary logic $\mathcal{L}_{\omega_1\omega}$, i.e., using countable Boolean connectives \bigwedge, \bigvee, \neg , as well as finitary quantifiers \exists, \forall . This is essentially a routine coding exercise; we will sketch the details for the sake of completeness.

The idea is to encode a nontrivial cut $\emptyset, X \neq H \in \mathcal{H}_{\delta < \infty}$ as its boundary δH , which is a finite set of pairs of vertices. For each $1 \leq n \in \mathbb{N}$, define the formulas

$$\phi_{\in\delta\leq n}(z,(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)) := \text{``there is a path from z to some x_i not passing through any edge (x_j,y_j) in either direction",
$$\phi_{\delta\leq n}((x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)) := (x_1 \ G \ y_1) \wedge \cdots \wedge (x_n \ G \ y_n) \wedge \\ \forall z \left(\begin{array}{c} \neg \phi_{\in\delta\leq n}(z,(x_1,y_1),\ldots,(x_n,y_n)) \\ \leftrightarrow \phi_{\in\delta\leq n}(z,(y_1,x_1),\ldots,(y_n,x_n)) \end{array} \right).$$$$

Lemma 11. A graph (X, G) satisfies $\phi_{\delta \leq n}((x_1, y_1), \dots, (x_n, y_n))$ for an *n*-tuple of pairs of vertices iff $\{(x_1, y_1), \dots, (x_n, y_n)\} = \delta H$ for some nontrivial $H \in \mathcal{H}_{\delta \leq n}$, namely

$$H_{(x_1,y_1),\dots,(x_n,y_n)} := \{z \mid \phi_{\in\delta \leq n}(z,(x_1,y_1),\dots,(x_n,y_n))\}.$$

Proof. It is easily seen that if $\{(x_1,y_1),\ldots,(x_n,y_n)\}=\delta H$, then $\phi_{\in\delta\leq n}(z,(x_1,y_1),\ldots,(x_n,y_n))$ defines precisely the elements of H; thus $\phi_{\delta\leq n}((x_1,y_1),\ldots,(x_n,y_n))$ holds. Conversely, suppose $\phi_{\delta\leq n}((x_1,y_1),\ldots,(x_n,y_n))$ holds. Then letting $H=H_{(x_1,y_1),\ldots,(x_n,y_n)}$ as above, we have $x_i\in H\not\ni y_i$ for each i as witnessed by paths of length 0; thus $\{(x_1,y_1),\ldots,(x_n,y_n)\}\subseteq \delta H$. If there were some $(x,y)\in \delta H$ not among the (x_i,y_i) , then x would admit both a path to some x_i not passing through any (x_j,y_j) , and a path through y to some y_i not passing through any (x_j,y_j) , a contradiction. \square

From this, it is easy to define the inclusion ordering among cuts:

$$H_{(x_{1},y_{1}),...,(x_{m},y_{m})} \subseteq H_{(x'_{1},y'_{1}),...,(x'_{n},y'_{n})}$$

$$\iff \forall z \, (z \in H_{(x_{1},y_{1}),...,(x_{m},y_{m})} \Rightarrow z \in H_{(x'_{1},y'_{1}),...,(x'_{n},y'_{n})})$$

$$\iff \forall z \, (\phi_{\in \delta < m}(z,(x_{1},y_{1}),...,(x_{m},y_{m})) \Rightarrow \phi_{\in \delta < n}(z,(x'_{1},y'_{1}),...,(x'_{n},y'_{n}))).$$

It follows that we may define the equivalence relation of two tuples of edges representing the same cut, namely if they are \subseteq each other. It is also straightforward to define (the graph of) the complement

operation \neg on cuts in terms of their boundaries, by just flipping edges. The lattice operations \cap , \cup are also first-order definable in terms of \subseteq . Thus, we have essentially encoded the Boolean algebra of cuts $\mathcal{H}_{\delta<\infty}$ in $\mathcal{L}_{\omega_1\omega}$, and so we may freely refer to cuts in building more complicated formulas. (Formally speaking, we have defined an *interpretation*, in $\mathcal{L}_{\omega_1\omega}$, of the theory of Boolean algebras into the theory of connected graphs; see [Hod93, Ch. 7], [Che25, §9].)

The following properties of cuts are now straightforward to define in succession:

$$\begin{split} |\delta H_{(x_1,y_1),\dots,(x_m,y_m)}| &\leq n \iff \exists x_1',y_1',\dots,x_n',y_n' \left(H_{(x_1,y_1),\dots,(x_m,y_m)} = H_{(x_1',y_1'),\dots,(x_n',y_n')}\right), \\ |\delta H_{(x_1,y_1),\dots,(x_m,y_m)}| &= n \iff (|\delta H_{(x_1,y_1),\dots,(x_m,y_m)}| \leq n) \land \neg (|\delta H_{(x_1,y_1),\dots,(x_m,y_m)}| \leq n-1), \\ H &\in \mathcal{H}_{\mathsf{conn}} \iff \forall z,z' \left((z \in H \Leftrightarrow z' \in H) \Rightarrow \exists \ \mathsf{path} \ z \leftrightsquigarrow z' \ \mathsf{on} \ \mathsf{same} \ \mathsf{side} \ \mathsf{of} \ H\right), \\ H &\asymp K \iff (H \cap K = \varnothing \ \mathsf{or} \ H \cap \neg K = \varnothing \ \mathsf{or} \ \neg H \cap \neg K = \varnothing), \end{split}$$

followed by, inductively for each n, the properties

"
$$|\delta H| = n$$
 and $|\varepsilon H| = k$ ",
" $|\delta H| = n$ and $H \in \mathcal{H}_{irr}$ ".

The formulas ϕ_n defining irreducible cuts with boundary of size $\leq n$ desired in Theorem 1 are given by $\phi_n((x_1, y_1), \dots, (x_n, y_n)) := "H_{(x_1, y_1), \dots, (x_n, y_n)} \in \mathcal{H}_{irr}"$.

Acknowledgments I would like to thank Anush Tserunyan and Robin Tucker-Drob for their feedback on a preliminary version of this note.

References

- [Ber68] George M. Bergman, On groups acting on locally finite graphs, Ann. of Math. (2) 88 (1968), 335–340.
- [Che25] Ruiyuan Chen, Étale structures and the Joyal-Tierney representation theorem in countable model theory, Bull. Symb. Log. (2025), 1–43, to appear.
- [CPTT25] Ruiyuan Chen, Antoine Poulin, Ran Tao, and Anush Tserunyan, *Tree-like graphings*, wallings, and median graphings of equivalence relations, Forum Math. Sigma 13 (2025), Paper No. e64, 37.
- [DD89] Warren Dicks and M. J. Dunwoody, *Groups acting on graphs*, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989.
- [Dic18] Warren Dicks, Groups acting on graphs, preprint (2018).
- [DK15] M. J. Dunwoody and B. Krön, Vertex cuts, J. Graph Theory 80 (2015), no. 2, 136–171.
- [Dun17] Martin J. Dunwoody, Structure trees, networks and almost invariant sets, Groups, graphs and random walks, London Math. Soc. Lecture Note Ser., vol. 436, Cambridge Univ. Press, Cambridge, 2017, pp. 137–175.
- [DW13] Volker Diekert and Armin Weiß, Context-free groups and their structure trees, Internat. J. Algebra Comput. 23 (2013), no. 3, 611–642.

- [Ham18] Matthias Hamann, Accessibility in transitive graphs, Combinatorica **38** (2018), no. 4, 847–859.
- [Hod93] Wilfrid Hodges, *Model theory*, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993.
- [Krö10] Bernhard Krön, Cutting up graphs revisited—a short proof of Stallings' structure theorem, Groups Complex. Cryptol. 2 (2010), no. 2, 213–221.
- [Mar16] David Marker, Lectures on infinitary model theory, Lecture Notes in Logic, vol. 46, Cambridge University Press, Cambridge, 2016.
- [Rol98] Martin Roller, *Poc sets, median algebras and group actions*, Ph.D. thesis, Universität Regensburg, 1998.
- [Tse20] Anush Tserunyan, A descriptive construction of trees and Stallings' theorem, Trends in set theory, Contemp. Math., vol. 752, Amer. Math. Soc., Providence, RI, 2020, pp. 191–207.