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Let G ⊆ X2 be a connected simple undirected graph. By an (oriented edge) cut, we mean a
partition of the vertex set X = H ⊔ ¬H, which we may identify with the first half H ⊆ X, such
that the edge boundary between them δH := G ∩ (H × ¬H) is finite. The collection of all cuts
forms a Boolean algebra Hδ<∞ = HG

δ<∞(X) ⊆ 2X . Two cuts H, K ∈ Hδ<∞ are nested if one of
H, ¬H is disjoint from one of K, ¬K.

In [DD89], Dicks and Dunwoody showed that for any connected graph (X, G), there exists
a “canonical” nested family of cuts H≍ ⊆ Hδ<∞ generating all of Hδ<∞ under finite Boolean
combinations. Indeed, more is true: for each n ∈ N, every cut with edge boundary of size ≤ n is a
finite Boolean combination of such cuts which are in H≍. The significance of nested families of cuts
lies in a Stone-type duality with their trees of “ultrafilters”, sometimes called structure trees, that
forms part of the machinery around Stallings’ theorem on ends of groups. The Dicks–Dunwoody
result has seen numerous applications and generalizations, including in recovering Stallings’ theorem
and strengthenings thereof; see e.g., [Rol98], [DW13], [DK15], [Ham18].

The object of this note is to give a self-contained exposition of a version of the Dicks–Dunwoody
construction. Our main goal is to clarify the precise sense in which the construction is “canonical”.
The construction as written in [DD89] produces a nested family which is “canonical” insofar as it is
invariant under all automorphisms of the graph G; however, it is arguably “non-canonical” in that it
appeals to Zorn’s lemma (albeit in an automorphism-invariant way). Another way to say it is that
the construction does not work in a uniform way across all graphs G. A different version of the
construction given by Dicks [Dic18] is canonical in this stronger sense, avoiding Zorn’s lemma, but
only for quasi-transitive graphs (it is based on a well-ordering defined by Bergman [Ber68], which
does extend to all graphs, but again depending on a well-ordering of the automorphism orbits).
Finally, Dunwoody [Dun17] gave a construction which is fully canonical and works in all graphs
(indeed in all networks).

We prove the following version of the Dicks–Dunwoody result, which is based on a simplified
version of Dunwoody’s construction, and formalizes the sense in which it is “canonical”, via
definability in the countably infinitary logic Lω1ω (see e.g., [Mar16]):

Theorem 1 (Dicks–Dunwoody). For any connected graph (X, G), we may define a canonical
nested family of connected and coconnected cuts H≍ ⊆ Hδ<∞, such that for each n ∈ N, every cut
with boundary of size ≤ n is a finite Boolean combination of such cuts which are in H≍; and the
boundaries of such cuts in H≍ are defined by an Lω1ω formula ϕn((x1, y1), (x2, y2), . . . , (xn, yn)) in
the language of graphs, not depending on the graph (X, G).

In fact, every ingredient used in our construction appeared already in [DD89] in some form;
however, we apply them in a different order, that is inspired by the approach to Stallings’ theorem
due to Krön [Krö10] (see also [Tse20] for an exposition of this proof).

1



1 Nestedness and corners
It is useful to formulate the basic properties of nestedness in the context of an abstract Boolean
algebra A = (A, ∧, ∨, ⊤, ⊥, ¬). For a, b ∈ A, their corners are

a ⊞ b := {a ∧ b, a ∧ ¬b, ¬a ∧ b, ¬a ∧ ¬b}.

We call a ∧ b, ¬a ∧ ¬b opposite corners; same for a ∧ ¬b, ¬a ∧ b. We call a, b nested if ⊥ ∈ a ⊞ b,
i.e., one of a, ¬a is disjoint from one of b, ¬b; we denote this by

a ≍ b :⇐⇒ ⊥ ∈ a ⊞ b.

We write
a≍ := {b ∈ A | a ≍ b}.

For a subset B ⊆ A, we write B≍ :=
⋂

b∈B b≍. We call B nested if its elements are pairwise nested.

Lemma 2 (see [DD89, proof of 2.9], [Krö10, 3.1], [Tse20, 3.14], [Dun17, 2.8]). For any a, b, c ∈ A,
if a ≍ c and b ≍ c, then either a ∧ b ≍ c or a ∨ b = ⊤ (so a ≍ b). In other words,

a ∨ b ̸= ⊤ =⇒ a≍ ∩ b≍ ⊆ (a ∧ b)≍.

Hence
a ̸≍ b =⇒ a≍ ∩ b≍ ⊆ (a ⊞ b)≍.

Proof. If one of a, b is disjoint from one of c, ¬c, then clearly so is a ∧ b, so a ∧ b ≍ c. Otherwise,
each of ¬a, ¬b is disjoint from one of c, ¬c. If both are disjoint from c or from ¬c, then so is
¬(a ∧ b) = ¬a ∨ ¬b, so a ∧ b ≍ c; otherwise, a ∨ b = ⊤. The last claim follows by negating a, b.

Remark 3 (see [Krö10, 3.1], [Tse20, 3.15]). For any a, b ∈ A, clearly

a≍, b≍ ⊆ (a ∧ b)≍ ∪ (¬a ∧ ¬b)≍

(e.g., disjointness from a implies disjointness from a ∧ b). Hence for any opposite corners c, d of a, b,

a≍ ∪ b≍ ⊆ c≍ ∪ d≍.

2 Subfamilies of cuts
Now let (X, G) be a connected graph, where G ⊆ X2 is the edge set. For A, B ⊆ X, define

δ(A, B) := G ∩ (A × B), δA := δ(A, ¬A);

thus δA is the outgoing edge boundary of A. We have δA = ∅ iff A is trivial, i.e., ∅ or X.
We define the following subsets of 2X (denoted by decorations of H for “half-space”):

• Hδ<∞ = HG
δ<∞(X) := {H ⊆ X | |δH| < ∞}, the Boolean algebra of cuts.

• Hδ≤n := {H ⊆ X | |δH| ≤ n} for each n ∈ N.

• Hconn := {H ⊆ X | H, ¬H are connected (or empty)}.
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Lemma 4 (see [DD89, 2.7], [Krö10, 2.1], [Tse20, 3.8], [CPTT25, 5.4]). For any n ∈ N and x, y ∈ X,
there are only finitely many H ∈ Hδ≤n ∩ Hconn separating x, y, i.e., such that x ∈ H /∋ y.

Proof. Clearly, Hδ≤n ⊆ 2X is closed in the product topology; and for any H ∈ Hδ≤n, the clopen
neighborhood {K ∈ 2X | δH ⊆ δK} isolates H from all H ̸= K ∈ Hconn. Thus Hδ≤n∩Hconn ⊆ Hδ≤n

is a closed subset, in which every nontrivial point H ̸= ∅, X is isolated; and so the set of x ∈ H /∋ y
is a compact set of isolated points, hence finite.

Corollary 5 (see [DD89, 2.8], [Tse20, 3.11], [CPTT25, 5.9]). For any n ∈ N and H ∈ Hδ<∞, there
are only finitely many K ∈ Hδ≤n ∩ Hconn which are non-nested with H.

Proof. If H, K are non-nested, then K separates two boundary vertices of H.

Lemma 6 (see [DD89, proof of 2.4], [Krö10, 2.2], [Tse20, 3.17], [Dun17, 2.7]). Suppose H, K ∈ Hδ<∞
have a pair of opposite corners whose boundaries have sizes at least those of H, K respectively.
Then these corners have boundaries of the same sizes as those of H, K respectively.

Proof. By negating/swapping H, K if necessary, we may assume that

|δ(H ∩ K)| ≥ |δH|, |δ(¬H ∩ ¬K)| ≥ |δK|.

But also (see Figure 7)

|δH| + |δK| = |δ(H, ¬H)| + |δ(K, ¬K)|
≥
(
|δ(H ∩ K, ¬H ∩ K)| + |δ(H ∩ K, ¬H ∩ ¬K)| + |δ(H ∩ ¬K, ¬H ∩ ¬K)|

)
+
(
|δ(H ∩ K, H ∩ ¬K)| + |δ(H ∩ K, ¬H ∩ ¬K)| + |δ(¬H ∩ K, ¬H ∩ ¬K)|

)
=
(
|δ(H ∩ K, ¬H ∩ K)| + |δ(H ∩ K, ¬H ∩ ¬K)| + |δ(H ∩ K, H ∩ ¬K)|

)
+
(
|δ(H ∩ ¬K, ¬H ∩ ¬K)| + |δ(H ∩ K, ¬H ∩ ¬K)| + |δ(¬H ∩ K, ¬H ∩ ¬K)|

)
= |δ(H ∩ K)| + |δ(¬H ∩ ¬K)|.

Thus both of the above inequalities are equalities.

H

¬H

K ¬K

H ∩ K H ∩ ¬K

¬H ∩ K ¬H ∩ ¬K

Figure 7: Counting edges between corners of a pair of cuts.
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3 Irreducible cuts
For any cut H ∈ Hδ<∞, using Corollary 5, define the rank of H to be

ρ(H) := (|δH|, |εH|) ∈ N2

where
εH := Hδ≤|δH| ∩ Hconn ∩ (Hδ<|δH| ∩ Hirr)≍ \ H≍.

We order ranks in N2 lexicographically. Call H ∈ Hδ<∞ reducible if either H or ¬H is a union of
two cuts of strictly smaller rank, irreducible otherwise. Put

• Hρ≤(n,k) := {H ∈ Hδ<∞ | ρ(H) ≤ (n, k)} for each (n, k) ∈ N2.

• Hirr := {H ∈ Hδ<∞ | H is irreducible}.
(Thus, the notions of rank and irreducibility are defined simultaneously by induction on |δH|.)

It is easily seen that ρ(H) = ρ(¬H), and H ∈ Hirr ⇐⇒ ¬H ∈ Hirr. Hence, Hirr ⊆ Hconn, since
if H has ≥ 2 components then they have strictly smaller boundary. Note also that

⟨Hρ≤(n,k)⟩ = ⟨Hρ≤(n,k) ∩ Hirr⟩,

where ⟨−⟩ denotes the generated Boolean algebra, by an easy induction on (n, k). Thus
(8) ⟨Hδ≤n⟩ = �⋃

k⟨Hρ≤(n,k)⟩ = �⋃
k⟨Hρ≤(n,k) ∩ Hirr⟩ = ⟨Hδ≤n ∩ Hirr⟩.

Theorem 9. Hirr is nested, hence H≍ := Hirr forms the desired family of cuts in Theorem 1.
Proof. We show that any H, K ∈ Hirr are nested, by induction on max(|δH|, |δK|). Negating H
and/or K if necessary, we may assume H ∩ K is a corner of H, K of minimal rank. Then the
opposite corners H \ K, K \ H have rank ≥ ρ(H ∩ K), whence by irreducibility of H, K,

ρ(H \ K) ≥ ρ(H), ρ(K \ H) ≥ ρ(K).(∗)
In particular, we have the corresponding inequalities for |δ(−)|. By Lemma 6, it follows that

|δ(H \ K)| = |δH|, |δ(K \ H)| = |δK|.

Hence by (∗),
|ε(H \ K)| ≥ |εH|, |ε(K \ H)| ≥ |εK|.(†)

Suppose first that |δH| ≠ |δK|, without loss of generality |δH| > |δK|. If H ̸≍ K, then
ε(H \ K) = Hδ≤|δH| ∩ Hconn ∩ (Hδ<|δH| ∩ Hirr)≍ \ (H \ K)≍

⫋ εH = Hδ≤|δH| ∩ Hconn ∩ (Hδ<|δH| ∩ Hirr)≍ \ H≍

by Lemma 2, the fact that every cut in ε(H \ K) is nested with K ∈ Hδ<|δH| ∩ Hirr, and that
K ∈ (Hδ<|δH| ∩ Hirr)≍ ∩ (H \ K)≍ \ H≍ by the induction hypothesis, contradicting (†).

Now suppose that |δH| = |δK|, but H ̸≍ K. By Lemma 2 as above, every cut in ε(H \ K) is
non-nested with H or with K, and likewise for every cut in ε(K \ H); hence

ε(H \ K) ∪ ε(K \ H) ⫋ εH ∪ εK,

with the inclusion being strict again because K ∈ (Hδ<|δH| ∩ Hirr)≍ ∩ (H \ K)≍ \ H≍, here using
the previous case (instead of the induction hypothesis). But also by Remark 3,

ε(H \ K) ∩ ε(K \ H) ⊆ εH ∩ εK.

Taking cardinalities and adding yields |ε(H \ K)| + |ε(K \ H)| < |εH| + |εK|, contradicting (†).
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Remark 10. We may “relativize” the above construction to any Boolean subalgebra A ⊆ Hδ<∞
with the property that whenever H ∈ A, then every connected component of H is in A. The
definitions of rank ρA, εA, and irreducible cuts Airr ⊆ A are the same as above, but considering
only cuts in A; the assumption on A guarantees that Airr ⊆ Aconn := A ∩ Hconn as above.

For example, let C be any family of connected subsets of X, or more generally closed connected
subsets of the end compactification X̂ = X̂G (i.e., the Stone space of Hδ<∞, where a subset C ⊆ X̂G

is connected if every clopen set Ĥ ⊆ X̂ for H ∈ Hδ<∞ either contains C, or is disjoint from C, or
has a boundary edge between two vertices in C). Then the family AC ⊆ Hδ<∞ of cuts that either
contain or are disjoint from each element of C forms a Boolean algebra with the above property.
Thus, we get a canonical nested subfamily generating AC . This applies for instance to C = {C, D}
for two disjoint closed connected sets C, D ⊆ X̂ (e.g., C = a geodesic between two ends, D = a
third end), yielding a canonical nested generating family of cuts separating C, D.

4 Lω1ω-definability of cuts
To finish, we should verify that the construction of Hirr is indeed definable in the countably infinitary
logic Lω1ω, i.e., using countable Boolean connectives

∧
,
∨

, ¬, as well as finitary quantifiers ∃, ∀.
This is essentially a routine coding exercise; we will sketch the details for the sake of completeness.

The idea is to encode a nontrivial cut ∅, X ̸= H ∈ Hδ<∞ as its boundary δH, which is a finite
set of pairs of vertices. For each 1 ≤ n ∈ N, define the formulas

ϕ∈δ≤n(z, (x1, y1), (x2, y2), . . . , (xn, yn)) :=“there is a path from z to some xi not passing
through any edge (xj , yj) in either direction”,

ϕδ≤n((x1, y1), (x2, y2), . . . , (xn, yn)) := (x1 G y1) ∧ · · · ∧ (xn G yn) ∧

∀z

(
¬ϕ∈δ≤n(z, (x1, y1), . . . , (xn, yn))

↔ ϕ∈δ≤n(z, (y1, x1), . . . , (yn, xn))

)
.

Lemma 11. A graph (X, G) satisfies ϕδ≤n((x1, y1), . . . , (xn, yn)) for an n-tuple of pairs of vertices
iff {(x1, y1), . . . , (xn, yn)} = δH for some nontrivial H ∈ Hδ≤n, namely

H(x1,y1),...,(xn,yn) := {z | ϕ∈δ≤n(z, (x1, y1), . . . , (xn, yn))}.

Proof. It is easily seen that if {(x1, y1), . . . , (xn, yn)} = δH, then ϕ∈δ≤n(z, (x1, y1), . . . , (xn, yn))
defines precisely the elements of H; thus ϕδ≤n((x1, y1), . . . , (xn, yn)) holds. Conversely, suppose
ϕδ≤n((x1, y1), . . . , (xn, yn)) holds. Then letting H = H(x1,y1),...,(xn,yn) as above, we have xi ∈ H /∋ yi

for each i as witnessed by paths of length 0; thus {(x1, y1), . . . , (xn, yn)} ⊆ δH. If there were some
(x, y) ∈ δH not among the (xi, yi), then x would admit both a path to some xi not passing through
any (xj , yj), and a path through y to some yi not passing through any (xj , yj), a contradiction.

From this, it is easy to define the inclusion ordering among cuts:

H(x1,y1),...,(xm,ym) ⊆ H(x′
1,y′

1),...,(x′
n,y′

n)

⇐⇒ ∀z (z ∈ H(x1,y1),...,(xm,ym) ⇒ z ∈ H(x′
1,y′

1),...,(x′
n,y′

n))
⇐⇒ ∀z (ϕ∈δ≤m(z, (x1, y1), . . . , (xm, ym)) ⇒ ϕ∈δ≤n(z, (x′

1, y′
1), . . . , (x′

n, y′
n))).

It follows that we may define the equivalence relation of two tuples of edges representing the same cut,
namely if they are ⊆ each other. It is also straightforward to define (the graph of) the complement
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operation ¬ on cuts in terms of their boundaries, by just flipping edges. The lattice operations ∩, ∪
are also first-order definable in terms of ⊆. Thus, we have essentially encoded the Boolean algebra
of cuts Hδ<∞ in Lω1ω, and so we may freely refer to cuts in building more complicated formulas.
(Formally speaking, we have defined an interpretation, in Lω1ω, of the theory of Boolean algebras
into the theory of connected graphs; see [Hod93, Ch. 7], [Che25, §9].)

The following properties of cuts are now straightforward to define in succession:

|δH(x1,y1),...,(xm,ym)| ≤ n ⇐⇒ ∃x′
1, y′

1, . . . , x′
n, y′

n

(
H(x1,y1),...,(xm,ym) = H(x′

1,y′
1),...,(x′

n,y′
n)
)
,

|δH(x1,y1),...,(xm,ym)| = n ⇐⇒ (|δH(x1,y1),...,(xm,ym)| ≤ n) ∧ ¬(|δH(x1,y1),...,(xm,ym)| ≤ n − 1),
H ∈ Hconn ⇐⇒ ∀z, z′ ((z ∈ H ⇔ z′ ∈ H) ⇒ ∃ path z ↭ z′ on same side of H

)
,

H ≍ K ⇐⇒ (H ∩ K = ∅ or H ∩ ¬K = ∅ or ¬H ∩ K = ∅ or ¬H ∩ ¬K = ∅),

followed by, inductively for each n, the properties

“|δH| = n and |εH| = k”,

“|δH| = n and H ∈ Hirr”.

The formulas ϕn defining irreducible cuts with boundary of size ≤ n desired in Theorem 1 are given
by ϕn((x1, y1), . . . , (xn, yn)) := “H(x1,y1),...,(xn,yn) ∈ Hirr”.
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