On the large section uniformization theorem

Ruiyuan Chen

In this note, we give a proof of the following standard result, which is a trivial rephrasing of the original proof, but with a more "topological" and less "combinatorial" flavor.

Theorem (Kechris [Kec95^{*}, 18.6^{*}]). Let $f: X \to Y$ be a Borel map between standard Borel spaces, and $Y \ni y \mapsto \mathcal{I}_y \subseteq \mathcal{B}(f^{-1}(y))$ be an assignment of a σ -ideal of Borel sets on each fiber of f. For $A \in \mathcal{B}(X)$, put

$$\exists_f^{\mathcal{I}}(A) := \left\{ y \in Y \mid f^{-1}(y) \cap A \notin \mathcal{I}_y \right\}.$$

Assume that $\exists_f^{\mathcal{I}}(A) \in \mathbf{\Delta}_1^1(f(X))$ for each $A \in \mathcal{B}(X)$, and that $\exists_f^{\mathcal{I}}(X) = f(X)$. Then $f(X) \subseteq Y$ is Borel, and there is a Borel section $g: f(X) \hookrightarrow X$ of f, meaning $f \circ g = \mathrm{id}_{f(X)}$.

Proof. Fix a compatible Polish topology on X such that each fiber $f^{-1}(y)$ is closed, and let $\mathcal{F}(X)$ denote the Effros Borel space. For $y \in Y$, let $\operatorname{supp}_{\mathcal{I}}(y) \subseteq f^{-1}(y)$ be the **closed support** of \mathcal{I}_y , i.e., the smallest closed subset whose complement is in \mathcal{I}_y . Then for open $U \subseteq X$,

$$\operatorname{supp}_{\mathcal{I}}(y) \cap U \neq \emptyset \iff y \in \exists_f^{\mathcal{I}}(U);$$

thus $\operatorname{supp}_{\mathcal{I}} : f(X) \to \mathcal{F}(X)$ is Δ_1^1 -measurable. It follows by Lusin separation that $\operatorname{supp}_{\mathcal{I}}$ extends to a Borel map $s : Y \to \mathcal{F}(X)$ (indeed, we may assume without loss of generality that $\mathcal{F}(X) \cong 2^{\mathbb{N}}$; then for each subbasic clopen $U_i = \{z \mid z(i) = 1\} \subseteq 2^{\mathbb{N}}$, the Σ_1^1 sets $\operatorname{supp}_{\mathcal{I}}^{-1}(U_i), f(X) \setminus \operatorname{supp}_{\mathcal{I}}^{-1}(U_i)$ may be separated by a Borel set, whose indicator function is the *i*th coordinate of the desired s). Now let $g : Y \to X$ be the composition of s followed by the Kuratowski–Ryll-Nardzewski selector $\mathcal{F}(X) \to X$ (see [Kec95, 12.13]), so that $g(y) \in s(y)$ whenever $s(y) \neq \emptyset$. Then

$$f(X) = \{ y \in Y \mid f(g(y)) = y \};$$

indeed, \subseteq holds because for $y \in f(X)$, we have $s(y) = \operatorname{supp}_{\mathcal{I}}(y) \in \mathcal{F}(f^{-1}(y)) \setminus \{\emptyset\}$ since $\exists_f^{\mathcal{I}}(X) = f(X)$, while \supseteq is obvious. Thus f(X) is Borel and g restricted to f(X) is a section of f. \Box

Corollary (Lusin–Suslin). Let $f : X \to Y$ be a Borel injection between standard Borel spaces. Then $f(X) \subseteq Y$ is Borel.

Proof. Put the trivial σ -ideal $\mathcal{I}_y := \{\emptyset\}$ on each fiber $f^{-1}(y)$; then for Borel $A \subseteq X$, $\exists^{\mathcal{I}}(f(A)) = f(A) \subseteq f(X)$ is Δ_1^1 since its complement in f(X) is $f(X \setminus A)$. \Box

Acknowledgments I thank Forte Shinko and Anush Tserunyan for helping to optimize this proof.

References

- [Kec95] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
- [Kec95*] A. S. Kechris, Classical descriptive set theory: corrections and updates, https://pma. caltech.edu/documents/5656/CDST-corrections.pdf.