On the Lopez-Escobar theorem for marked structures

Ruiyuan Chen

The classical Lopez-Escobar theorem [LE65], [Vau75] shows that a Borel, isomorphism-invariant set in the Polish space of structures on a fixed countable set is $\mathcal{L}_{\omega_1\omega}$ -definable. In [Che25], we gave an axiomatic account of general "topological spaces parametrizing countable structures" obeying the usual descriptive set-theoretic properties, and proved a version of Lopez-Escobar in that context. Other than the classical space of structures on \mathbb{N} , one commonly used such "space of structures" consists of marked structures (e.g., marked groups) over a fixed generating set. In this note, we give a brief, self-contained exposition of the proof of Lopez-Escobar in this special case.

Let \mathcal{L} be a countable functional first-order language, $V = \{v_0, v_1, v_2, \ldots\}$ be a countably infinite set of variables, and $\langle V \rangle$ be the set of first-order \mathcal{L} -terms generated by V.

The space of marked \mathcal{L} -structures is the space of \mathcal{L} -congruence relations on $\langle V \rangle$:

$$X_{0} := \left\{ \begin{array}{c|c} \forall t \in \langle V \rangle \ (t \sim t), \\ \forall s, t \in \langle V \rangle \ (s \sim t \implies t \sim s), \\ \forall r, s, t \in \langle V \rangle \ (r \sim s \sim t \implies r \sim t), \\ \forall n\text{-ary } f \in \mathcal{L} \ \forall s_{0}, \dots, s_{n-1}, t_{0}, \dots, t_{n-1} \in \langle V \rangle \ \left(\bigwedge_{i} (s_{i} \sim t_{i}) \implies f(\vec{s}) \sim f(\vec{t}) \right) \end{array} \right\}$$

a zero-dimensional Polish space. We think of $\sim \in X_0$ as coding the quotient structure $\langle V \rangle / \sim X_0$. For each $n \in \mathbb{N}$, the space of n-pointed marked \mathcal{L} -structures is

$$X_n := \{(\sim, [t_0], \dots, [t_{n-1}]) \mid \sim \in X_0 \text{ and } [t_0], \dots, [t_{n-1}] \in \langle V \rangle / \sim \}$$

$$\cong (X_0 \times \langle V \rangle^n) / \approx \quad \text{where } (\sim, \vec{s}) \approx (\sim, \vec{t}) : \iff \forall i (s_i \sim t_i).$$

This is also a zero-dimensional Polish space, since we may exhibit X_n as a retract of $X_0 \times \langle V \rangle^n$ by mapping each congruence class to its least element in some arbitrarily chosen enumeration of $\langle V \rangle$. Note that \approx is relatively open in the fiber product $(X_0 \times \langle V \rangle^n) \times_{X_0} (X_0 \times \langle V \rangle^n) \cong X_0 \times \langle V \rangle^{2n}$; thus the quotient map $X_0 \times \langle V \rangle^n \twoheadrightarrow X_n$ is open. It follows that X_n has an open basis consisting of images of basic open rectangles in $X_0 \times \langle V \rangle^n$, which are of the form

$$U_{\phi,\vec{s}\cdot\vec{t}} := \left\{ (\sim, [\vec{s}]) \mid \langle V \rangle / \sim \models \phi([\vec{t}]) \right\}$$

where $\vec{s} \in \langle V \rangle^n$, $\vec{t} \in \langle V \rangle^m$, and $\phi(x_0, \dots, x_{m-1})$ is a finite conjunction of equations and inequations. The **isomorphism groupoid of marked** \mathcal{L} -structures is

$$G := \{(\sim, \sim', g) \mid \sim, \sim' \in X_0 \text{ and } g : \langle V \rangle / \sim \cong \langle V \rangle / \sim' \}$$

$$\cong \{(\sim, \sim', \tilde{g}) \in X_0 \times X_0 \times 2^{\langle V \rangle^2} \mid \tilde{g} \text{ is } (\sim \times \sim') \text{-invariant and descends to an isomorphism} \}.$$

This is also a zero-dimensional Polish space. The topology is generated by the first and second coordinate projections dom, cod : $G \to X_0$ as well as the subbasic open sets

$$[s \mapsto t] := \{(\sim, \sim', g) \mid g([s]_{\sim}) = [t]_{\sim'}\}$$

for fixed $s, t \in \langle V \rangle$; note that it is not necessary to include complements of these sets in the subbasis, since g is a function and so $g([s]) \neq [t] \iff \exists t' \not\sim' t (g([s]) = [t'])$.

For each n, we have a natural action

$$: G \times_{X_0} X_n \longrightarrow X_n$$
$$((\sim, \sim', g), (\sim, [\vec{a}])) \longrightarrow (\sim', g([\vec{a}])).$$

Lemma. For every open set $U \subseteq X_n$, the isomorphism saturation $G \cdot U \subseteq X_n$ is Σ_1 -definable. (Here by a Σ_1 formula, we mean a countable disjunction of finitary existential formulas.)

Proof. For a basic open $U = U_{\phi, \vec{s}, \vec{t}}$ as above, where $\vec{s} \in \langle V \rangle^n$, $\vec{t} \in \langle V \rangle^m$, and $\phi(x_0, \dots, x_{m-1})$ is finite quantifier-free, let $k \in \mathbb{N}$ be large enough so that the terms \vec{s}, \vec{t} only mention the variables $v_0, \dots, v_{k-1} \in V$; we claim that $G \cdot U_{\phi, \vec{s}, \vec{t}}$ is defined by the formula

$$\psi(x_0, \dots, x_{n-1}) := \exists v_0, \dots, v_{k-1} ((x_0 = s_0) \land \dots \land (x_{n-1} = s_{n-1}) \land \phi(\vec{t})).$$

Indeed, for every $(\sim, [\vec{s}]) \in U_{\phi, \vec{s}, \vec{t}}$, the tuple $[\vec{s}] \in (\langle V \rangle / \sim)^n$ clearly satisfies ψ , with each v_i witnessed by its own congruence class $[v_i] \in \langle V \rangle / \sim$. Conversely, if $(\sim', [\vec{s}']) \in X_n$ is such that $\langle V \rangle / \sim' \models \psi([\vec{s}'])$, then there is an assignment of witnesses $\tilde{g}: \langle v_0, \ldots, v_{k-1} \rangle \to \langle V \rangle / \sim'$ such that $[s_i'] = \tilde{g}(s_i)$ and $\langle V \rangle / \sim' \models \phi(\tilde{g}(\vec{t}))$. Extend \tilde{g} to the rest of the variables arbitrarily to get a surjective homomorphism $\tilde{g}: \langle V \rangle \twoheadrightarrow \langle V \rangle / \sim'$, and let \sim be the congruence kernel of \tilde{g} ; then \tilde{g} descends to an isomorphism $g: \langle V \rangle / \sim \cong \langle V \rangle / \sim'$ such that $[\vec{s}] = g([\vec{s}])$ and $\langle V \rangle / \sim' \models \phi(g([\vec{t}]))$, whence $\langle V \rangle / \sim \models \phi([\vec{t}])$, whence $(\sim, [\vec{s}]) \in U_{\phi, \vec{s}, \vec{t}}$ is isomorphic to $(\sim', [\vec{s}'])$.

Now for an arbitrary set $A \subseteq X_n$, define the **Vaught transform**

$$G * A := \{(\sim, [\vec{t}]) \in X_n \mid \exists^* g \in \operatorname{cod}^{-1}(\sim) ((\sim, [\vec{t}]) \in g \cdot A)\}.$$

Note that for A open, this is $G \cdot A$, since $\cot^{-1}(\sim) \subseteq G$ is a Polish space. More generally, this holds as long as $\{g \mid (\sim, [\vec{t}]) \in g \cdot A\} = \{h \mid h \cdot (\sim, [\vec{t}]) \in A\}^{-1}$ is open for each $(\sim, [\vec{t}]) \in X_n$; we call such A orbitwise open. This includes in particular isomorphism-invariant A, for which $G * A = G \cdot A = A$.

Theorem. For every Σ_{α}^{0} set $A \subseteq X_{n}$, $G * A \subseteq X_{n}$ is Σ_{α} -definable.

In particular, if A is isomorphism-invariant, then A is Σ_{α} -definable.

Proof. By induction on the Borel complexity of A. For $\alpha = 1$, this is the preceding lemma. For a countable union of A's, we may take the disjunction of the defining formulas. Thus, it remains to show, assuming the result is true for a given α and all n, A, that G * B for a Π^0_{α} set $B = X_n \setminus A$ is $\Sigma_{\alpha+1}$ -definable. We have

$$(\sim, [\vec{t}]) \in G * B \iff \exists^* g \in \operatorname{cod}^{-1}(\sim) ((\sim, [\vec{t}]) \in g \cdot B).$$

A countable open basis for $\operatorname{cod}^{-1}(\sim)$ is given by its intersections with finitely many $[r_i \mapsto s_i]$, for $r_i, s_i \in \langle V \rangle$; thus by the Baire property, the above is

$$\iff \exists m \, \exists \vec{r}, \vec{s} \in \langle V \rangle^m \begin{pmatrix} \cot^{-1}(\sim) \cap \bigcap_i \llbracket r_i \mapsto s_i \rrbracket \neq \varnothing \text{ and } \\ \forall^* g \in \cot^{-1}(\sim) \cap \bigcap_i \llbracket r_i \mapsto s_i \rrbracket \left((\sim, [\vec{t}]) \in g \cdot B \right) \end{pmatrix}$$

$$\iff \exists m \, \exists \vec{r}, \vec{s} \in \langle V \rangle^m \begin{pmatrix} \exists g \in \cot^{-1}(\sim) \cap \bigcap_i \llbracket r_i \mapsto s_i \rrbracket \left((\sim, [\vec{t}]) \in g \cdot X_n \right) \\ \wedge \neg \exists^* g \in \cot^{-1}(\sim) \cap \bigcap_i \llbracket r_i \mapsto s_i \rrbracket \left((\sim, [\vec{t}]) \in g \cdot A \right) \end{pmatrix}.$$

Now note that $g \in \operatorname{cod}^{-1}(\sim)$ takes $[r_i] \mapsto [s_i]$, and takes some element of A to $[\vec{t}]$, iff it takes some element of $A \times \{[\vec{r}]\}$ to $[(\vec{t}, \vec{s})]$; thus the above becomes

$$\iff \exists m \, \exists \vec{r}, \vec{s} \in \langle V \rangle^m \begin{pmatrix} \exists g \in \operatorname{cod}^{-1}(\sim) \left((\sim, [(\vec{t}, \vec{s})]) \in g \cdot (X_n \times \{[\vec{r}]\}) \right) \\ \wedge \neg \exists^* g \in \operatorname{cod}^{-1}(\sim) \left((\sim, [(\vec{t}, \vec{s})]) \in g \cdot (A \times \{[\vec{r}]\}) \right) \end{pmatrix}$$

$$\iff \langle V \rangle / \sim \models \bigvee_m \bigvee_{\vec{r} \in \langle V \rangle^m} \exists \vec{y} \left(\phi_{\vec{r}}([\vec{t}], \vec{y}) \wedge \neg \psi_{\vec{r}}([\vec{t}], \vec{y}) \right)$$

where $\phi_{\vec{r}}, \psi_{\vec{r}}$ are Σ_{α} formulas from the induction hypothesis.

Remark. The above spaces X_0, X_1, X_n are X, M, M_X^n from [Che25, Example 6.12], applied to a Morleyization of the original language to make negated atomic formulas Σ_1 [Che25, Example 3.4].

References

- [Che25] Ruiyuan Chen, Étale structures and the Joyal-Tierney representation theorem in countable model theory, Bull. Symb. Log. (2025), 1–43, to appear.
- [LE65] E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund. Math. 57 (1965), 253–272.
- [Vau75] Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294.