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The classical Lopez-Escobar theorem [LE65], [Vau75] shows that a Borel, isomorphism-invariant
set in the Polish space of structures on a fixed countable set is Lω1ω-definable. In [Che25], we gave
an axiomatic account of general “topological spaces parametrizing countable structures” obeying
the usual descriptive set-theoretic properties, and proved a version of Lopez-Escobar in that context.
Other than the classical space of structures on N, one commonly used such “space of structures”
consists of marked structures (e.g., marked groups) over a fixed generating set. In this note, we give
a brief, self-contained exposition of the proof of Lopez-Escobar in this special case.

Let L be a countable functional first-order language, V = {v0, v1, v2, . . .} be a countably infinite
set of variables, and ⟨V ⟩ be the set of first-order L-terms generated by V .

The space of marked L-structures is the space of L-congruence relations on ⟨V ⟩:

X0 :=

∼ ∈ 2⟨V ⟩2

∣∣∣∣∣∣∣∣∣∣
∀t ∈ ⟨V ⟩ (t ∼ t),

∀s, t ∈ ⟨V ⟩ (s ∼ t =⇒ t ∼ s),
∀r, s, t ∈ ⟨V ⟩ (r ∼ s ∼ t =⇒ r ∼ t),

∀n-ary f ∈ L ∀s0, . . . , sn−1, t0, . . . , tn−1 ∈ ⟨V ⟩
(∧

i(si ∼ ti) =⇒ f(s⃗) ∼ f (⃗t)
)

,
a zero-dimensional Polish space. We think of ∼ ∈ X0 as coding the quotient structure ⟨V ⟩/∼.

For each n ∈ N, the space of n-pointed marked L-structures is

Xn :=
{

(∼, [t0], . . . , [tn−1])
∣∣ ∼ ∈ X0 and [t0], . . . , [tn−1] ∈ ⟨V ⟩/∼

}
≅ (X0 × ⟨V ⟩n)/≈ where (∼, s⃗) ≈ (∼, t⃗) :⇐⇒ ∀i (si ∼ ti).

This is also a zero-dimensional Polish space, since we may exhibit Xn as a retract of X0 × ⟨V ⟩n by
mapping each congruence class to its least element in some arbitrarily chosen enumeration of ⟨V ⟩.
Note that ≈ is relatively open in the fiber product (X0 × ⟨V ⟩n) ×X0 (X0 × ⟨V ⟩n) ≅ X0 × ⟨V ⟩2n;
thus the quotient map X0 × ⟨V ⟩n ↠ Xn is open. It follows that Xn has an open basis consisting of
images of basic open rectangles in X0 × ⟨V ⟩n, which are of the form

Uϕ,s⃗,⃗t :=
{

(∼, [s⃗])
∣∣ ⟨V ⟩/∼ |= ϕ([⃗t])

}
where s⃗ ∈ ⟨V ⟩n, t⃗ ∈ ⟨V ⟩m, and ϕ(x0, . . . , xm−1) is a finite conjunction of equations and inequations.

The isomorphism groupoid of marked L-structures is

G :=
{

(∼,∼′, g)
∣∣ ∼,∼′ ∈ X0 and g : ⟨V ⟩/∼ ≅ ⟨V ⟩/∼′}

≅
{

(∼,∼′, g̃) ∈ X0 ×X0 × 2⟨V ⟩2 ∣∣ g̃ is (∼ × ∼′)-invariant and descends to an isomorphism
}
.

This is also a zero-dimensional Polish space. The topology is generated by the first and second
coordinate projections dom, cod : G → X0 as well as the subbasic open sets

Js 7→ tK := {(∼,∼′, g) | g([s]∼) = [t]∼′}
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for fixed s, t ∈ ⟨V ⟩; note that it is not necessary to include complements of these sets in the subbasis,
since g is a function and so g([s]) ̸= [t] ⇐⇒ ∃t′ ̸∼′ t (g([s]) = [t′]).

For each n, we have a natural action

· : G×X0 Xn −→ Xn

((∼,∼′, g), (∼, [⃗a])) −→ (∼′, g([⃗a])).

Lemma. For every open set U ⊆ Xn, the isomorphism saturation G · U ⊆ Xn is Σ1-definable.
(Here by a Σ1 formula, we mean a countable disjunction of finitary existential formulas.)

Proof. For a basic open U = Uϕ,s⃗,⃗t as above, where s⃗ ∈ ⟨V ⟩n, t⃗ ∈ ⟨V ⟩m, and ϕ(x0, . . . , xm−1) is
finite quantifier-free, let k ∈ N be large enough so that the terms s⃗, t⃗ only mention the variables
v0, . . . , vk−1 ∈ V ; we claim that G · Uϕ,s⃗,⃗t is defined by the formula

ψ(x0, . . . , xn−1) := ∃v0, . . . , vk−1
(
(x0 = s0) ∧ · · · ∧ (xn−1 = sn−1) ∧ ϕ(⃗t)

)
.

Indeed, for every (∼, [s⃗]) ∈ Uϕ,s⃗,⃗t, the tuple [s⃗] ∈ (⟨V ⟩/∼)n clearly satisfies ψ, with each vi witnessed
by its own congruence class [vi] ∈ ⟨V ⟩/∼. Conversely, if (∼′, [s⃗′]) ∈ Xn is such that ⟨V ⟩/∼′ |= ψ([s⃗′]),
then there is an assignment of witnesses g̃ : ⟨v0, . . . , vk−1⟩ → ⟨V ⟩/∼′ such that [s′

i] = g̃(si) and
⟨V ⟩/∼′ |= ϕ(g̃(⃗t)). Extend g̃ to the rest of the variables arbitrarily to get a surjective homomorphism
g̃ : ⟨V ⟩ ↠ ⟨V ⟩/∼′, and let ∼ be the congruence kernel of g̃; then g̃ descends to an isomorphism
g : ⟨V ⟩/∼ ≅ ⟨V ⟩/∼′ such that [s⃗] = g([s⃗]) and ⟨V ⟩/∼′ |= ϕ(g([⃗t])), whence ⟨V ⟩/∼ |= ϕ([⃗t]), whence
(∼, [s⃗]) ∈ Uϕ,s⃗,⃗t is isomorphic to (∼′, [s⃗′]).

Now for an arbitrary set A ⊆ Xn, define the Vaught transform

G ∗A :=
{

(∼, [⃗t]) ∈ Xn

∣∣ ∃∗g ∈ cod−1(∼)
(
(∼, [⃗t]) ∈ g ·A

)}
.

Note that for A open, this is G ·A, since cod−1(∼) ⊆ G is a Polish space. More generally, this holds
as long as {g | (∼, [⃗t]) ∈ g ·A} = {h | h · (∼, [⃗t]) ∈ A}−1 is open for each (∼, [⃗t]) ∈ Xn; we call such A
orbitwise open. This includes in particular isomorphism-invariant A, for which G ∗A = G ·A = A.

Theorem. For every Σ0
α set A ⊆ Xn, G ∗A ⊆ Xn is Σα-definable.

In particular, if A is isomorphism-invariant, then A is Σα-definable.

Proof. By induction on the Borel complexity of A. For α = 1, this is the preceding lemma. For a
countable union of A’s, we may take the disjunction of the defining formulas. Thus, it remains to
show, assuming the result is true for a given α and all n,A, that G ∗B for a Π0

α set B = Xn \A is
Σα+1-definable. We have

(∼, [⃗t]) ∈ G ∗B ⇐⇒ ∃∗g ∈ cod−1(∼)
(
(∼, [⃗t]) ∈ g ·B

)
.

A countable open basis for cod−1(∼) is given by its intersections with finitely many Jri 7→ siK, for
ri, si ∈ ⟨V ⟩; thus by the Baire property, the above is

⇐⇒ ∃m∃r⃗, s⃗ ∈ ⟨V ⟩m

(
cod−1(∼) ∩

⋂
iJri 7→ siK ̸= ∅ and

∀∗g ∈ cod−1(∼) ∩
⋂

iJri 7→ siK
(
(∼, [⃗t]) ∈ g ·B

))

⇐⇒ ∃m∃r⃗, s⃗ ∈ ⟨V ⟩m

(
∃g ∈ cod−1(∼) ∩

⋂
iJri 7→ siK

(
(∼, [⃗t]) ∈ g ·Xn

)
∧ ¬∃∗g ∈ cod−1(∼) ∩

⋂
iJri 7→ siK

(
(∼, [⃗t]) ∈ g ·A

)).
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Now note that g ∈ cod−1(∼) takes [ri] 7→ [si], and takes some element of A to [⃗t], iff it takes some
element of A× {[r⃗]} to [(⃗t, s⃗)]; thus the above becomes

⇐⇒ ∃m∃r⃗, s⃗ ∈ ⟨V ⟩m

(
∃g ∈ cod−1(∼)

(
(∼, [(⃗t, s⃗)]) ∈ g · (Xn × {[r⃗]})

)
∧ ¬∃∗g ∈ cod−1(∼)

(
(∼, [(⃗t, s⃗)]) ∈ g · (A× {[r⃗]})

))
⇐⇒ ⟨V ⟩/∼ |=

∨
m

∨
r⃗∈⟨V ⟩m ∃y⃗

(
ϕr⃗([⃗t], y⃗) ∧ ¬ψr⃗([⃗t], y⃗)

)
where ϕr⃗, ψr⃗ are Σα formulas from the induction hypothesis.

Remark. The above spaces X0, X1, Xn are X,M,Mn
X from [Che25, Example 6.12], applied to a

Morleyization of the original language to make negated atomic formulas Σ1 [Che25, Example 3.4].
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