On the Lopez-Escobar theorem for marked structures

Ruiyuan Chen

The classical Lopez-Escobar theorem [LEG65|, [Vau75] shows that a Borel, isomorphism-invariant
set in the Polish space of structures on a fixed countable set is Ly, -definable. In [Che25], we gave
an axiomatic account of general “topological spaces parametrizing countable structures” obeying
the usual descriptive set-theoretic properties, and proved a version of Lopez-Escobar in that context.
Other than the classical space of structures on N, one commonly used such “space of structures”
consists of marked structures (e.g., marked groups) over a fixed generating set. In this note, we give
a brief, self-contained exposition of the proof of Lopez-Escobar in this special case.

Let £ be a countable functional first-order language, V' = {vg, v1,v2,...} be a countably infinite
set of variables, and (V') be the set of first-order L-terms generated by V.

The space of marked L-structures is the space of £-congruence relations on (V):

Ve e (V) (t ~t),
Vs,t € (V) (s~t = t~s),
Vros,t € (V) (r~s~t = r~t),
Vn-ary f € LVso,. .., 8n-1,t0,- - tno1 € (V) (Ni(si ~ti) = f(5) ~ (D))

a zero-dimensional Polish space. We think of ~ € X as coding the quotient structure (V')/~.
For each n € N, the space of n-pointed marked L-structures is

X o= {(~ [to]s -+ [tn1]) | ~ € Xo and [to), ..., [tn-1] € (V)/~}
~ (Xo x (V)")/~  where (~,5) = (~, 1) <= Vi(s; ~ ;).

X() =q~v e 2<V>2

This is also a zero-dimensional Polish space, since we may exhibit X, as a retract of Xy x (V)" by
mapping each congruence class to its least element in some arbitrarily chosen enumeration of (V).
Note that a is relatively open in the fiber product (Xo x (V)") xx, (Xo x (V)") 2= X, x (V)2
thus the quotient map Xy x (V)™ —» X, is open. It follows that X,, has an open basis consisting of
images of basic open rectangles in Xy x (V)™ which are of the form

Uz = {(~ [ | (V)/~ = o)}

where &€ (V)™ t € (V)™ and ¢(zg, ..., T, 1) is a finite conjunction of equations and inequations.
The isomorphism groupoid of marked L-structures is

G = {(N7N/79) ‘ Na’\'l c XO and g: <V>/N = <V>/NI}
=~ {(~,~',§) € Xo x Xo X 2(V)? ‘ g is (~ x ~/)-invariant and descends to an isomorphism }.

This is also a zero-dimensional Polish space. The topology is generated by the first and second
coordinate projections dom, cod : G — X as well as the subbasic open sets

[s = t] :={(~~",9) [ 9([s]~) = [t~}



for fixed s,t € (V); note that it is not necessary to include complements of these sets in the subbasis,
since ¢ is a function and so g([s]) # [t] < ' A"t (g9([s]) = [t']).
For each n, we have a natural action

: G x Xo X, — X,
((~~9), (~1a])) — (~, g([a]))-
Lemma. For every open set U C X,,, the isomorphism saturation G - U C X,, is Yj-definable.
(Here by a ¥; formula, we mean a countable disjunction of finitary existential formulas.)

Proof. For a basic open U = Uy . as above, where § € (V)", te (V)™ and é(zq,. .., Tm_1) is

finite quantifier-free, let kK € N be large enough so that the terms §,¢ only mention the variables
vg, ..., Vg1 € V; we claim that G - U 7 is defined by the formula

1/}(1'0, - ,:cn_l) = Jvg, ..., Vi1 ((1’0 = S()) VANREIAN (xn_l = Sn—l) VAN (;5(2?))

Indeed, for every (~, [5]) € U, 7 the tuple [5] € ((V))/~)" clearly satisfies 1, with each v; witnessed
by its own congruence class [v;] € (V') /~. Conversely, if (~/,[5]) € X,, is such that (V)/~" |= ¢([5']),
then there is an assignment of witnesses g : (vg,...,v5_1) — (V)/~' such that [s}] = g(s;) and
< )/~ = ¢(§(t)). Extend § to the rest of the variables arbitrarily to get a surjective homomorphism
g: (V) = (V)/~' and let ~ be the congruence kernel of g; then § descends to an isomorphism

g:{V)/~ = (V)/~' such that [5] = g([3]) and (V)/~" = ¢(g([f])), whence (V)/~ | ¢([¢]), whence
(~,[5]) € Uy 5 is isomorphic to (~/, [5']). O

Now for an arbitrary set A C X,,, define the Vaught transform
GxA:={(~[t]) € Xn|Fgecod(~)((~[t]) €g-A4)}.

Note that for A open, this is G - A, since cod ™ (~) C G is a Polish space. More generally, this holds
aslong as {g | (~,[t]) € g-A} = {h | h-(~, [t]) € A} ! is open for each (~, [t]) € X,; we call such A
orbitwise open. This includes in partlcular isomorphism-invariant A, for Wthh GxA=G-A=A.

Theorem. For every 22 set A C X, GxAC X, is X,-definable.
In particular, if A is isomorphism-invariant, then A is X,-definable.

Proof. By induction on the Borel complexity of A. For = 1, this is the preceding lemma. For a
countable union of A’s, we may take the disjunction of the defining formulas. Thus, it remains to
show, assuming the result is true for a given o and all n, A, that G * B for a II?, set B = X, \ A is
Ya+1-definable. We have

(~,[f]) € G+ B <= F*g€cod ™} (~) ((~[t]) € g- B).

A countable open basis for cod™(~) is given by its intersections with finitely many [r; — s;], for
i, 8i € (V); thus by the Baire property, the above is

cod ! (~) N N,[ri = s:i] # @ and >
¥'g € cod ™ (~) N (Vs = s:] ((~. () € g B)

Jg € cod7L(~) N N;lrs — si] ((N, ) eg- Xn) )
A=3*g € cod ™ (~) NN;[ri = si] ((~, []) € g+ A) '

< Im3IF,§e (V)™ (

< Im3IF,§e (V)™ (



Now note that g € cod™(~) takes [r;] — [s;], and takes some element of A to [f], iff it takes some
element of A x {[]} to [(, 5)]; thus the above becomes

—

<:>Hmﬂf,s?e(mm<39€COd_1(N)(( (@3 € g- (X0 x {7D) )

~_[(t ]
A=Fg € cod™(~) ((~ [(£;5)]) € g~ (A x {[f]}))
= (V)/~E Vo Vieeyn 37 (07, ) A —v:((], 7))

where ¢z, Y7 are X, formulas from the induction hypothesis. ]

7)

Remark. The above spaces Xo, X1, X, are X, M, M% from [Che25, Example 6.12], applied to a
Morleyization of the original language to make negated atomic formulas ¥; [Che25, Example 3.4].

References

[Che25] Ruiyuan Chen, Etale structures and the Joyal-Tierney representation theorem in countable
model theory, Bull. Symb. Log. (2025), 1-43, to appear.

[LE65] E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund.
Math. 57 (1965), 253-272.

[Vau75] Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269-294.



	References

