On the Lusin–Suslin and Lusin unicity theorems

Ruiyuan Chen

In this note, we give simple proofs of the following classical results of Lusin–Suslin and Lusin; see [\[Kec,](#page-1-0) 15.1, 18.11]. In the proof, for maximum clarity, we take the definition of **standard Borel space** to be a measurable space which is isomorphic to a Borel subset of $2^{\mathbb{N}}$. See the subsequent remarks for comments on this, as well as connections between this proof and other results.

Theorem (generalized Lusin–Suslin). Let $f: X \to Y$ be a Borel map between standard Borel spaces, $Z \subseteq Y$ be an arbitrary subset such that $f|_{f^{-1}(Z)}$ is injective. Then $f(X) \cap Z \in \mathbf{\Delta}_1^1(Z)$.

Proof. We may assume $Y = 2^{\mathbb{N}}$. Since *X* is standard Borel, there is a Borel embedding $g: X \hookrightarrow 2^{\mathbb{N}}$ with Borel image. For each subbasic clopen $U_i := \{ \vec{x} \mid x_i = 1 \} \subseteq 2^{\mathbb{N}}$, there are Borel $B_i \subseteq 2^{\mathbb{N}}$ as well as $A_i \in \mathbf{\Delta}_1^1(Z)$ such that

$$
g^{-1}(B_i) = f^{-1}(U_i), \qquad f^{-1}(A_i) = g^{-1}(U_i) \cap f^{-1}(Z),
$$

the former since *f* is Borel and *g* is a Borel embedding, and the latter by applying $\mathbf{\Pi}^1_1$ reduction to the Π_1^1 sets $Y \setminus f(g^{-1}(U_i)), Y \setminus f(X \setminus g^{-1}(U_i)) \subseteq Y$ which cover Z since $f|_{f^{-1}(Z)}$ is injective. This means the indicator functions $\mathbb{1}_{\vec{B}} = (\mathbb{1}_{B_i})_i : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ and $\mathbb{1}_{\vec{A}} = (\mathbb{1}_{A_i})_i : Z \to 2^{\mathbb{N}}$ obey

$$
(*)\qquad \qquad \mathbb{1}_{\vec{B}}\circ g=f, \qquad \qquad \mathbb{1}_{\vec{A}}\circ f|_{f^{-1}(Z)}=g|_{f^{-1}(Z)}
$$

(see the following diagram):

$$
f^{-1}(Z) \subseteq X
$$

\n
$$
f|_{f^{-1}(Z)} \downarrow \qquad f \downarrow \qquad g
$$

\n
$$
Z \subseteq Y = 2^{\mathbb{N}} \xleftarrow{1 \to 2 \atop 1 \to 1} 2^{\mathbb{N}}
$$

Then

$$
f(X) \cap Z = \{ z \in Z \mid z = \mathbb{1}_{\vec{B}}(\mathbb{1}_{\vec{A}}(z)) \& \mathbb{1}_{\vec{A}}(z) \in g(X) \}.
$$

Indeed, \subseteq is obvious from (*); conversely, if *z* belongs to this set, then $\mathbb{1}_{\vec{A}}(z) = g(x)$ for some $x \in X$, whence $z = \mathbb{1}_{\vec{B}}(\mathbb{1}_{\vec{A}}(z)) = \mathbb{1}_{\vec{B}}(g(x)) = f(x)$. And this set is $\Delta_1^1(Z)$, since $\mathbb{1}_{\vec{A}}$ is Δ_1^1 -measurable.

Corollary (Lusin–Suslin). Let $f: X \to Y$ be an injective Borel map between standard Borel spaces. Then $f(X) \subseteq Y$ is Borel.

Proof. Take $Z = Y$ above.

Corollary (Lusin). Let $f: X \to Y$ be an arbitrary Borel map between standard Borel spaces. Then $\exists!_f(X) := \{ y \in Y \mid |f^{-1}(y)| = 1 \} \subseteq Y$ is Π_1^1 .

Proof. Take $Z = \{y \in Y \mid |f^{-1}(y)| \le 1\}$ above.

 \Box

 \Box

Remark. The above statements imply that for Borel $R \subseteq X \times Y$, $\exists!$ *Y* (*R*) := {*x* ∈ *X* | $\exists!$ *y R*(*x, y*)} is Π_1^1 , respectively Borel if the existence is always unique, by taking the projection $f: R \to X$.

Remark. As noted above, we took "standard Borel space" to mean a measurable space which is Borel isomorphic to a Borel subset of $2^{\mathbb{N}}$ (with the induced σ -algebra). This is easily seen to be equivalent to the usual definition of being induced by a Polish topology, via a change of topology argument. More precisely, note that such an argument preserves the Borel σ -algebra by definition, without using Lusin–Suslin (which would render the above proof of Lusin–Suslin circular).

Remark. The above proof of Lusin–Suslin, with Σ^1_1 separation in place of Π^1_1 reduction when *f* is injective, is in some sense essentially equivalent to that given in [\[Ch2\]](#page-1-1).

In that proof, we replaced the latter half of the above argument with the topological analogue of Lusin–Suslin, namely that a topological embedding between Polish spaces has Π_2^0 image. This topological result may in turn be proved via an argument like the latter half of the above; see [\[Ch1,](#page-1-2) 4.1]. As explained there, both this result and the latter half of Lusin–Suslin (that a Borel *embedding* between standard Borel spaces has Borel image) amount to the dual algebraic fact that any presentation $\langle G | R \rangle$ of an algebraic structure, e.g., a finite presentation of a group, may be turned into a presentation with any other generating set *H* obeying the same cardinality bound.

The above proof of Lusin's theorem is also inspired in part by the classical proof in [\[Kur,](#page-1-3) §39 VII] using "Lusin schemes", which may likewise be seen as generalizing the "Lusin scheme" proof of Lusin–Suslin [\[Kec,](#page-1-0) 15.1].

Acknowledgment. I would like to thank Forte Shinko for asking for a simple proof of Lusin's unicity theorem, and the subsequent discussions, that led to this write-up.

References

- [Ch1] R. Chen, *Notes on quasi-Polish spaces*, preprint, <https://arxiv.org/abs/1809.07440>, 2018.
- [Ch2] R. Chen, *A simple proof of the Lusin–Suslin theorem*, unpublished note, [https://rynchn.](https://rynchn.github.io/math/lusin-suslin.pdf) [github.io/math/lusin-suslin.pdf](https://rynchn.github.io/math/lusin-suslin.pdf), 2018.
- [Kec] A. S. Kechris, *Classical descriptive set theory*, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, 1995.
- [Kur] K. Kuratowski, *Topologie. I. Espaces Métrisables, Espaces Complets*, Monografie Matematyczne, Vol. 20, PWN, Warszawa-Wrocław, 1948.