
AFFINE TRANSFORMATIONS OF THE PLANE

1. Introduction

We are interested here in the geometry of the two-dimensional plane, R2. There are many concepts
commonly thought of as “geometric”, e.g., lines, circles, distances, angles, areas, etc. In 1872, Felix
Klein proposed his Erlangen program, an organizing framework for different geometric notions:

• There is not a single “geometry”, but rather multiple different “geometries”, depending on
which basic notions one is allowed to talk about.
• Each geometry is characterized by its allowed “symmetries”. For example, the symmetries

of Euclidean geometry include rotation, reflection, and translation.
• The meaningful notions in a particular geometry should be precisely those which are preserved

by all the symmetries. For example, the symmetries of Euclidean geometry preserve lines
and angles, but do not preserve, say, the notion of vertical line (which can be rotated),
which is therefore not a meaningful notion in Euclidean geometry.

Of course, 1872 was before the advent of mathematical logic. In modern terminology, the various
possible planar “geometries” are given by different structures (first-order or otherwise) one can put
on the underlying set R2; while the “symmetries” of each “geometry” are the automorphisms of
that structure. The last bullet point above is then an instance of the general fact that the notions
definable in a structure are precisely those preserved by all automorphisms (at least if one is willing
to use higher-order or infinitary logic; see Exercise 2.84 in the notes on first-order logic).

2. Affine geometry

Roughly speaking, affine geometry is the geometry one gets by regarding lines as the only primitive
notion. This is a more primitive geometry than Euclidean geometry: for example, scaling by a
constant factor is an affine automorphism, which shows that “distance” is not an affine notion.

We can encode “lines” into a first-order structure by talking about collinearity of three points.
Define the ternary relation on R2

Coll(A,B,C) :⇐⇒ A,B,C are collinear.

Note that here, each of A,B,C is an ordered pair of real numbers. Note also that we do not
necessarily require A,B,C to be distinct; if two of the points (or even all three) are equal, then
they are trivially collinear. Note, finally, that we do not say anything about the order in which
A,B,C appear on a line; for example, the following triples (A,B,C) both satisfy Coll:

A B C

C A B

The following more quantitative notion allows us to talk about not just the ordering of points on
a line, but even the precise position where a point appears on a line through two other points. An
affine combination of two points A = (xA, yA) and B = (xB, yB) is a point which can be written
as a weighted average of them:

C = (1− t)A + tB, for some t ∈ R.
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Here, tB := (txB, tyB) denotes the coordinatewise multiple, and similarly for (1 − t)A; while +
denotes coordinatewise addition. For example, when t = 0 we get A, while t = 1 yields B; as t
varies from 0 to 1, we move “at constant speed” from A to B.

A = 1A + 0B B = 0A + 1B

1
2A + 1

2B2A−B

Note that we also allow t outside the interval [0, 1], in which case we get points on the line AB but
not the line segment; e.g., when t = −1, we get 2A−B, which can be written more intelligibly as
A + (A−B) (start at A, then shift by the vector from B to A). Note, finally, that we again do not
require A 6= B; if A = B, then all affine combinations of them are the same.

In order to express affine combinations in first-order logic, we introduce, for each t ∈ R, the
binary operation

ACt : (R2)2 −→ R2

(A,B) 7−→ (1− t)A + tB.

Thus we get an uncountable signature Aaff , consisting of all the binary function symbols ACt for
each t (similarly to the example Avec of vector spaces), together with a natural Aaff -structure on R.

It is intuitively clear that the Aaff-structure on R is richer than merely the {Coll}-structure: if
we can say “C appears on the line AB at position t”, for each t, then we can say that C appears at
some position along the line. Formally, this “some” would be an infinite disjunction over all t ∈ R.
We also have to be slightly careful about the degenerate case where A = B; as noted above, in this
case their only affine combination will be the same point A = B, even though any C will be trivially
collinear with A,B,C (we can take the line AC instead). In summary, the infinitary formula

(A = B) ∨
∨

t∈R(ACt(A,B) = C) ∈ L{A,B,C}
form (Aaff)(2.1)

shows that the ternary relation Coll is positive-existential definable from the Aaff-structure on R2.

Exercise 2.2. More generally, an affine combination of any finite number of points A1, . . . , An ∈
R2 is a point of the form

a1A1 + · · ·+ anAn, for some a1, . . . , an ∈ R adding to 1.

For example, when n = 3 and a1 = a2 = a3 = 1
3 , we get the centroid or barycenter of a triangle:

A

B

C

1
3A + 1

3B + 1
3C

Show that for each n and a1, . . . , an adding to 1, the n-ary operation

ACa1,...,an : (R2)n −→ R2

(A1, . . . , An) 7−→ a1A1 + · · ·+ anAn

is definable by a term from the Aaff-structure on R2. [Hint: when n ≥ 2, not all the ai can be 1.]

Exercise 2.3. Show that for any three points A,B,C ∈ R2, the following are equivalent:

(a) every point can be written as an affine combination of A,B,C in at least one way;
(b) every point can be written as an affine combination of A,B,C in at most one way;
(c) A,B,C are not collinear, i.e., none of them is an affine combination of the other two.

If these hold, we say A,B,C are an affine basis for R2.
2



3. Affine transformations

An Aaff-homomorphism T : R2 → R2 is called an affine transformation. It follows that an
affine transformation preserves all operations or relations positive-existential definable from the
operations ACt, possibly in infinitary logic. This includes the collinearity relation (by (2.1)), as well
as general n-ary affine combinations as in Exercise 2.2.

Exercise 3.1. Using the affine basis (0, 0), (1, 0), (0, 1) for R2, show that affine transformations of
the plane are precisely all functions of the form

T : R2 −→ R2

(x, y) 7−→ (ax + by + c, dx + ey + f)

where a, b, c, d, e, f ∈ R are arbitrary. Moreover, these parameters a, b, c, d, e, f are uniquely deter-
mined by T , so that we have a bijection between affine transformations and R6.

[These 6 parameters a, b, c, d, e, f are commonly called the matrix of T , written as(
a b c
d e f

)
.

The left 2× 2 submatrix gives a linear transformation R2 → R2, called the linear part of T ; T is
this linear part followed by the translation (x, y) 7→ (x, y) + (c, f).]

A {Coll}-homomorphism T : R2 → R2 is called a collineation. Thus, all affine transformations
are collineations. Since Coll only allows us to express “being on the same line”, but doesn’t say
anything quantitative about positions along a line, we might intuitively expect collineations to be
much “looser” than affine transformations; for example, a priori, a collineation could arbitrarily
permute the order of points on a line. This intuition is partially correct:

Exercise 3.2.

(a) Give an example of a collineation T : R2 → R2 which is not affine.
(b) Conclude that affine combinations are not positive-existential definable from the collinearity

relation (even using infinitary logic).
(c) (for those who know some set theory) Show that the cardinality of the set of collineations

T : R2 → R2 is strictly bigger than that of the set of affine transformations.

By an invertible affine transformation, respectively, invertible collineation, we mean an
automorphism of R2 equipped with the respective structure. Note that since Aaff consists only of
function symbols, an invertible affine transformation is the same thing as a bijective one. The same
happens to be true for collineations, even though Coll is a relation:

Exercise 3.3.

(a) Show that A,B,C ∈ R2 are not collinear iff they are distinct, and every point in R2 lies on
a line through two distinct points each of which lies on one of the lines AB,BC,CA.

(b) Conclude that the inverse of every bijective collineation is a collineation. [See HW6 Q4.]

Now comes the surprise:

Theorem 3.4. Every invertible collineation T : R2 → R2 is affine.

In other words, keeping in mind the correspondence between automorphisms and definability (in
infinitary logic), this says that the purely qualitative notion of collinearity (the relation Coll) can
in fact be used to define positions along a line (the operations ACt)! Indeed, we will prove this
theorem by giving such an explicit definition of ACt from Coll. This will be done via a series of
lemmas, each showing that progressively more “quantitative” notions can be defined from Coll.
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Lemma 3.5. The quaternary relation

Para(A,B,C,D) :⇐⇒ A 6= B and C 6= D and the lines AB and CD are parallel

can be defined from Coll.

Proof. Two lines in the plane are parallel iff they don’t intersect, or they are the same line; thus
Para is defined by the {Coll}-formula

¬(A = B) ∧ ¬(C = D) ∧ (¬∃E (Coll(A,B,E) ∧ Coll(C,D,E)) ∨ (Coll(A,B,C) ∧ Coll(A,B,D))).

Lemma 3.6. The quaternary relation

Pgram(A,B,C,D) :⇐⇒ ABCD is a non-collinear parallelogram

can be defined from Coll and Para, hence from just Coll.

A B

D C

Proof. We basically just need to say that opposite sides are parallel; for non-collinearity, it is enough
to say that A,B,C are not collinear (which will in particular force all four vertices to be distinct, in
agreement with the first two clauses in the definition of Para above):

¬Coll(A,B,C) ∧ Para(A,B,C,D) ∧ Para(A,D,B,C).

At this stage, we have already extracted a fair amount of quantitative information from the Coll
relation. Indeed, note that parallelograms essentially allow us to express vector addition:

A A + ~V

A + ~W

~V

~W ~V + ~W

Informally speaking, all that is still needed in order to express arbitrary affine combinations is scalar
multiplication of vectors. Scaling by an integer amount can be expressed via repeated addition;
scaling by a rational a/b can then be expressed by saying that scaling one vector by a is equal to
scaling another by b. Of course, there is the technical annoyance that we need to add parallel vectors
here, while above we restricted to non-collinear parallelograms. This is easily worked around:

Lemma 3.7. The binary operation

AC2 : (R2)2 −→ R2

(A,B) 7−→ −A + 2B = B + (B −A)

can be defined from Pgram, hence from Coll.

Proof. Recall that to say that the operation AC2 is definable means that its ternary graph relation
“C = B + (B −A)” is definable. Indeed, we have

C = B + (B −A) ⇐⇒ ∃D ∃E (Pgram(A,B,E,D) ∧ Pgram(B,C,E,D)).

This expresses the following situation:

A
B

D E = D + (B −A)

C = B + (E −D) = B + (B −A)
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Lemma 3.8. For any rational t ∈ Q, the binary operation ACt : (R2)2 → R2 is definable from Coll.

Proof. We split the proof into several stages, for increasingly general t.
First, consider the case t = n ∈ N. We use induction on n. For n = 0 or 1, we have

AC0(A,B) = A, AC1(A,B) = B.

For n ≥ 2, by considering the picture

A B AC2(A,B) · · · ACn−2(A,B) ACn−1(A,B) ACn(A,B)

we are led to the calculation

ACn(A,B) = (1− n)A + nB

= (2− n)A + (n− 1)B + ((2− n)A + (n− 1)B − (3− n)A− (n− 2)B)

= AC2(ACn−2(A,B),ACn−1(A,B));

since AC2 is definable from Coll by the preceding lemma, while ACn−1,ACn−2 are definable by the
IH, we get that ACn is definable from Coll. This proves the case t = n ∈ N.

For negative t ∈ Z, we have

ACt(A,B) = (1− t)A + tB = AC1−t(B,A);

since t < 0, 1− t ≥ 0, so this reduces to the previous case. So we have proved all integer cases t ∈ Z.
Finally, for a rational t = a/b where a, b ∈ Z, we have

ACt(A,B) = C ⇐⇒ (1− a
b )A + a

bB = C

⇐⇒ a
b (B −A) = C −A

⇐⇒ a(B −A) = b(C −A)

⇐⇒ (1− a)A + aB = (1− b)A + bC

⇐⇒ ACa(A,B) = ACb(A,C);

since ACa,ACb are definable from Coll by the previous cases, so is ACt.

In order to complete the proof, we just need to extend from rational t to arbitrary real t ∈ R.
This turns out to be much harder than any of the preceding lemmas. Intuitively, the idea is that we
want to “approximate” ACt for an arbitrary real t by ACr for rational r ≈ t, and then take a limit
as r → t. We thus need to define “limit” from Coll. We can formulate this as follows:

Lemma 3.9. The ternary relation

Between(A,B,C) :⇐⇒ B is on the line segment AC

⇐⇒ B = ACt(A,C) for some t ∈ [0, 1]

is definable from Coll. [Such affine combinations with t ∈ [0, 1] are called convex combinations.]

Once we know this lemma, we can approximate t ∈ R by rationals r < t < s on either side of it,
and then demand that ACt(A,B) be between ACr(A,B) and ACs(A,B) for all such approximations;
by taking r, s to be closer and closer to t, a “squeezing” argument then shows that ACt(A,B) must
be what it should be. Assuming Lemma 3.9 for now, we can thus complete the

Proof of Theorem 3.4. We claim that for any t ∈ R,

ACt(A,B) = C ⇐⇒
∧

r,s∈Q;r<t<s Between(ACr(A,B), C,ACs(A,B)).(∗)
This is enough, since ACr,ACs are definable (in first-order logic) from Coll by Lemma 3.8, and
Between is definable by Lemma 3.9, whence ACt is definable (in infinitary logic) from Coll, hence
preserved by all {Coll}-automorphisms (by Exercise 2.62(c) in the notes on first-order logic).
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To see (∗): if ACt(A,B) = C, then for all r < t < s, we have

C = (1− t)A + tB

= A + t(B −A)

= A + (r + t−r
s−r (s− r))(B −A)

= A + ((1− t−r
s−r )r + t−r

s−rs)(B −A)

= (1− t−r
s−r )(A + r(B −A)) + t−r

s−r (A + s(B −A))

= (1− t−r
s−r )((1− r)A + rB) + t−r

s−r ((1− s)A + sB)

= AC t−r
s−r

(ACr(A,B),ACs(A,B))

where t−r
s−r ∈ [0, 1] because r < t < s, whence C is a convex combination of ACr(A,B),ACs(A,B).

Conversely, suppose that for all r, s ∈ Q with r < t < s, C is between ACr(A,B),ACs(A,B). Since

ACs(A,B)−ACr(A,B) = ((1− s)A + sB)− ((1− r)A + rB)

= (s− r)(B −A),

the distance between ACr(A,B),ACs(A,B) is s− r times the distance between A,B. Since C is
between ACr(A,B),ACs(A,B), as is ACt(A,B) (as shown above), the distance between C,ACt(A,B)
is thus at most s − r times the distance between A,B. Since we may choose r, s so that s − r is
arbitrarily small, the distance between C,ACt(A,B) must thus be zero.

So it remains to prove Lemma 3.9. We can make one more easy reduction:

Lemma 3.10. The ternary relation

Ray(A,B,C) :⇐⇒ B is on the ray AC

⇐⇒ B = ACt(A,C) for some t ∈ [0,∞)

is definable from Coll.

Proof of Lemma 3.9. Between(A,B,C) ⇐⇒ Ray(A,B,C) ∧ Ray(C,B,A).

Proof of Lemma 3.10. If A = C, then B = ACt(A,C) again just means A = B = C. So we may
restrict attention to the case A 6= C. Consider the following picture:

A C

D

E

F

B

Here D is any point not on the line AC, while E is any point on the line AC, so that

E = (1− t)A + tC
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for some t ∈ R. The unique line through E parallel to CD intersects the line AD at a unique point
F , since CD is not parallel to AD (since A,C,D are not collinear). We must have

F = (1− t)A + tD,

in order to ensure that the vector F −E = t(D − C) is parallel to the line CD. Now similarly to
before, the unique line through F parallel to DE intersects the line AC at a unique point B, since
DE is not parallel to AC (since these two lines intersect at a unique point E); and for the same
reason as for F , we must have

B = (1− t)A + tE

= (1− t)A + t((1− t)A + tC)

= (1 + t)(1− t)A + t2C

= (1− t2)A + t2C.

The key thing to note is that the coefficient t2 must be ≥ 0. In other words, what we have shown
is that, starting from any point E on the line AC, and then constructing F and B uniquely as
above, we end up with a point B on the ray AC; and this point B may be an arbitrary point
B = (1 − s)A + sC on the ray AC, for any s ≥ 0, since we may choose E above with t :=

√
s.

Putting everything together, we may define Ray from Coll and Para as follows:

Ray(A,B,C) ⇐⇒ (A = B) ∨

¬(A = C) ∧ ∃D ∃E ∃F

¬Coll(A,C,D) ∧ Coll(A,C,E) ∧
Para(C,D,E, F ) ∧ Coll(A,D,F ) ∧
Para(D,E, F,B) ∧ Coll(A,B,C)


.

(The clause A = B, aside from covering the case A = C, also takes care of the case E = A, in which
case E = F = B = A and so the relations Para(C,D,E, F ) and Para(D,E, F,B) fail to describe
the above construction of F and B.)

Exercise 3.11. Draw the above picture starting with E on the other side of A, to see that B still
ends up on the right side of A.

We started out trying to prove Theorem 3.4 by pointing out that it amounts to defining quantitative
positions on a line from the seemingly non-quantitative notion of collinearity. This is indeed what
all the formulas in the proofs of the preceding lemmas achieve. However, the details of how we
achieved this are a bit surprising: as we noted above, the relatively simple proofs of Lemmas 3.5
to 3.8 already extracted most of the quantitative information from Coll; whereas the hardest step
of passing from rational to real t is embodied by the still seemingly non-quantitative Lemma 3.10,
where we had to work quite hard in order to bridge the trivial-looking gap between lines and rays.

In fact, there is a precise sense in which Lemma 3.10 really is the single hardest part of the
proof, and not just because the proof we happened to give was so complicated: while the rest of
the proof also holds for affine geometry over planes F2 with coordinates from more general fields F,
Lemma 3.10 depends crucially on the fact that the only field automorphism of R is the identity
(which we exploited via the closely related fact that positive reals have square roots).

Exercise 3.12. Let F be an arbitrary field, and define collinearity of points in F2 via affine
combinations as in R2, but taking coefficients from F.

(a) Show that for any field automorphism h : F ∼= F, the function T : F2 → F2 defined by
applying h in each coordinate (i.e., T (x, y) := (h(x), h(y))) is an invertible collineation, but
is not an affine transformation unless h = idF.

(b) Conclude that Q[
√

2]2 ⊆ R2 (recall HW7) has a non-affine invertible collineation, even
though neither R2 nor Q2 does.
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