VARIABLE SUBSTITUTION

1. UNSAFE SUBSTITUTION

1.1. Definition. Let A be a first-order signature, X,Y be two sets of variables. A variable

substitution from X to Y is a function o : X — Etirm (A). Given such a o, we define, for each

term ¢ € Li,m(A), a term t[o] € LY, (A), called the substitution of ¢ into ¢, as follows:
z[o] := o(x) for z € X,
Ftr,. . ta)lo] == f(tlo], ... talo]) for f € Af,, and t1, ...ty € Logm(A).

We then define, for each formula ¢ € £X
of ¢ into ¢, inductively as follows:

A), a formula ¢[o] € LY _(A), called the substitution

form (

R(t1,...,ty)]o] :== R(t1[0], ..., ta]o]) for R e A%, (or =), t1,...,t, € L (A),
(¢ A)lo] = ¢lo] Aol
(¢ V4)lo] = ¢lo] v ¢[o],
(=¢)[o] := =¢[a],
Tl =T,
Llo] =
3z ¢)[0] := [@n+mn for ¢ € Lot 4).

Here, as in Definition 2.12 from first-order logic, o(x — z) : X U {zx} — Y U {x} means o extended
with the assignment = — x, replacing any previous value of o(x).

1.2. Example. Consider the Ay gfielg-formula
¢p:=(@<yAJy(@z+y=2).

Informally speaking, the two occurrences of y don’t refer to the same thing: the second occurrence
is bound by the 3y, hence is “inaccessible from the outside”. This is reflected in the substitution

plr—0,y—lLz—zl=@<ylr—0,y—1, 22 NFy(rz+y=2))r—0,y—1, z— 2]
=@<ylr—=0,y—1Lzzl AJy(x+y=2)x—0,y—y, z+— 2]
=(0<HAYO+y==2)

where in the middle step we used (z +— 0, y— 1, 2= 2)(y—y) = (. — 0, y = y, 2+ 2).

As in this example, it is common to want to substitute for only a few variables, while leaving all
others unchanged. We therefore adopt the following

1.3. Convention. When we write ¢[c], we allow o to be defined on only a subset of the free variables
of ¢, in which case we implicitly extend o via the identity on the remaining variables.

1.4. Example. With the same ¢ as in the previous example,
o=y, ym=@<ylyy-odAGQy@ty=2)z—y ye 2]
=@<ylz—yy= 2 Ay (le+y=2)z—y

=y <H)AW(@Y+y=2).
1

2. SUBSTITUTION AND INTERPRETATION

There is an elegant conceptual way to view (parts of) variable substitution in terms of other basic

notions in first-order logic. Note that we may view a set of terms LY, (A) as an A-structure, where

each function symbol f € A is interpreted as the syntactic f on terms, i.e., as “itself”:
Y
flemA (1) = ft,).

(This “term model” was used in proving the completeness theorem; see Lemma 3.41 in the notes.)

Thus, we may regard a substitution o : X — LY (A) as a variable assignment. Now comparing

Definition 1.1 to the definition of interpretation of terms (2.7 in the first-order logic notes) reveals
Y

(2.1) to] = t5em A (5).

This perspective allows us to give slick proofs of several basic facts about substitution:

2.2. Proposition (interpretation of substituted terms). For a substitution o : X — LY. (A),
A-structure M, variable assignment o : Y — M, and term t € £,,,(A), we have

term
(%) tlo]' (a) = 5! (o3 (@)
where o™ (a) = 03! () : X — M is given by interpreting each substituted term o(z) in M:

oy (a)(2) = o(2)y" (@).

Proof 1. By induction on t.
e For t = x € X, we have z[o]M () = o(2)M(a) = oM(a)(z) = 2M(cM(a)).
e For t = f(t1,...,t,) where the claim holds for ¢y, ...,t,, we have
f(trs. o ta)[o]M(@) = f(ti]o], . ta[o])M(a)
= MM (@), . talo]™(a))
= M 0M(@), .., 1 (0™ (a))) by TH
= f(t1, s ta) (oM (). -
Proof 2. Observe that by definition of interpretation of terms (2.7 from first-order logic), the map

h: ﬁtirm('A) — M

s — s™M(a)

is a homomorphism, thus preserves the interpretation of terms, i.e.,
t{o]M(a) = h(tlo]) = h(t“em N (0)) = M (ho o) = tM(c™M(a)). O

2.3. Corollary (double substitution into terms). For substitutions o : X — £X _(A), 7:Y —
LZ,(A) and a term ¢ € L, (A), we have
tlollr] = tlolr]]

where o[7] : X — LZ

term

(A) is given by substituting 7 into each output of o:
olr|(x) = o(x)[r].

Proof. Take M := LZ,.(A) and o := T above; then () becomes

to]Clm(A) (1) = £lm(A) (5 Llm(A) (7))

Y

which by (2.1) (applied three times) becomes the desired equation. O

2

2.4. Exercise.

(a) For substitution into quantifier-free formulas, we may describe them in a similar manner.
Let £X(A) € £X (A) denote the atomic (first-order) formulas. Then a quantifier-free

form
first-order A-formula is the same thing as a propositional £ (A)-formula, hence a term in the

signature {A,V,—, T, L} (called the signature Ao of Boolean algebras; see Exercise 4.17
in propositional logic).

For a quantifier-free ¢ € L(LY(A)) = t;ﬁ,ﬁA (.ABOO|) and substitution o : X — LY __(A),
Y
describe ¢[o] as ¢[r] for some 7 : LX(A) — Eteﬁn (ABOO|) and use this to prove

ololy (@) = g% (03 (),
ie, M=, ¢[a]<:>./\/l|:a/vn o,
] =

¢lollr] = ¢lolr]l-

(b) Find counterexamples to all the above statements when ¢ has quantifiers. [See Example 1.4.]

2.5. Exercise (free variables of substituted terms).
(a) Let A be a signature, X be a set of variables. Define an A-structure on P(X), such that
the free variables map FV : £X (A) — P(X) becomes an A-homomorphism.
(b) Using this, show that for o : X — LY . (A) and t € L, (A), we have

term

U FV(o(x)

x€FV(t)

(c) Show the same for quantifier-free ¢ € L& (A) in place of .

(d) Give a counterexample when ¢ has quantifiers.

form (

3. SAFE SUBSTITUTION

3.1. Definition. For ¢ € £ (A) and 0 : X — L£},.,(A), the substitution ¢[o] is safe if, informally
speaking, whenever we substitute a term past a quantifier 9z, that term does not contain x as a
free variable. Formally, this is defined by induction on ¢:

R(t1,...,ty)[o] is always safe,
(¢ Aol (¢V1/1)[0] safe 1= ¢lo],¢[o] are,
(—¢@)[o] safe <= ¢[o] is,
Tlo], Llo]
[o]

o] are always safe,

(3z ¢)[o] safe <= Vy € FV(Iz ¢) =FV(p) \ {z} (z € FV(c(y))), and ¢[o(z — x)] safe.

-~
x is not captured

In the last case, if the first condition fails, i.e., there is some y € FV(3x ¢) = FV(¢) \ {x} such that
x € FV(o(y)), we say that the substitution of y — o(y) into 3z ¢ captures the free = in o(y).
(Substitution into a term is always considered safe, since terms do not bind variables.)

3.2. Example. The substitution in Example 1.4 is not safe, because the substitution of o : z +— ¥y
into Jy (z +y = z) captures y (because z € FV(Jy (r +y = z)) and y € FV(o(x))).

Safe substitutions are the ones which have the intended meaning of “substitution” from informal
mathematical practice. Formally, this means that the kind of strange behavior in Exercise 2.4 does
not occur:

3

3.3. Proposition (interpretation of substituted formulas). For a substitution o : X — £X _(A),
A-structure M, variable assignment o : Y — M, and formula ¢ € £X _(A), if ¢[o] is safe, then

form
¢lo]M(a) = oM (eM(a)),
Le, M=, dlo] <= Mm@ ¢
Proof. By induction on ¢. The atomic and connective cases are straightforward (as in Exercise 2.4).

e For 3z ¢ € £ _(A), assuming the claim holds for ¢ € EXU{I}(A), we have

form form
(3 ¢)[0]M(a) = Frglofe =)™ (@)

= max glo(z = 2)M (a1 a))

= max ¢ (o (z = 2)M(a(z > a))) by IH; (%)
we want to show

= max $(o™M () (@ = a) = (3)M (M (a)). (1)
We have

cM@)(z —a): XU{z} — M
T a
X\ {z} 2y — oM()(y) = o(1)"(a),

while

o(z = 2)yM(alz = a)): X U{z} — M
z+— oz — z)(2)M(alz = a) = 2M(alz = a) = a
X\ {z} 3y oz = 2)(y)"(afe = a) = o () (afz = a));

if y € FV(¢), then this last interpretation o(y)™ (a(z + a)) is the same as o(y)™(a) above,
since by the safety assumption, z & FV(o(y)) and so the interpretation o(y)™(a) does
not depend on «(z). Thus () = (}), since the two variable assignments agree on all those
variables which actually occur free in ¢. O

3.4. Exercise (double substitution into formulas). Show that for substitutions o : X — LY (A)
and 7:Y — LZ,(A) and a formula ¢ € L (A), if ¢[o] is safe, then

¢lol[r] = ¢lol7]].

3.5. Remark. It is possible to derive a slightly weaker version of this statement (namely, up to
a-equivalence; see the following section) from a suitably generalized version of Proposition 3.3,
similar to how Corollary 2.3 is a special case of Proposition 2.2 by interpreting in a term structure.
Namely, since we are now interpreting formulas, not just terms, we need to consider structures in
which “truth values” of relations may belong to some kind of Apggo-structure, rather than {0, 1}.
More precisely, there needs to be one Aggo-structure for each possible variable set X, in which
X-ary formulas take values, along with operations between these structures used for interpreting 3.
Such a structure is called a hyperdoctrine, and is well beyond the scope of this course.

3.6. Exercise (free variables of substituted formulas; cf. Exercise 2.5). Show that for ¢ : X —
LY. (A) and ¢ € LZ (A), if ¢[o] is safe, then

term form
FV(¢lo)) = |J FV(o(x)).
z€FV(¢)
4

4. a-EQUIVALENCE

The way to deal with unsafe substitutions is familiar from informal mathematical practice: we
change the bound variables to avoid clashes.

4.1. Example. The gamma function in real analysis is defined by
oo
I(z):= / t* et dt.
0

If we want to evaluate I'(¢) in some context where t is a free variable, of course we should not blindly
substitute x with ¢ in the above formula; rather, we should first change the bound ¢ to e.g., s:

(o]
F(x):/ s te™% ds,
0
whence

F(t):/ stle™ ds.
0

4.2. Definition. Two formulas ¢, are a-equivalent,! denoted ¢ =, 9, if they may be converted
into each other by repeatedly changing variables bound by 3: namely, 3x ¢ may be changed to
Jy ¢z — y], provided this substitution is safe and y does not already occur free in ¢. In practice,
this is achieved by ensuring that y occurs neither free nor bound in ¢.

Formally, we need to define the binary relation =, in several steps. First, we define the relation
~q (“immediate a-equivalence”) to consist of exactly the following pairs of formulas:

Jxp ~o Jydlz — y| where y € FV(¢) U {x} and ¢z — y] is safe.

We then define ~, (“one-step a-equivalence”) to mean that two subformulas occurring in the same
position are ~, which formally means the binary relation generated inductively via:

¢N04¢ = @Z)%ad}a

P = PNO =y YN,
P, = ONP =, ONY,
P = VO =LYV,
P, = OV P, 0VY,
(b%aw = _‘(b%a_‘qﬁa

O~y Y = dxp =y T

Finally, we define =, to be the reflexive and transitive closure of ~;:
O =q ¥ <= dPg, P1,...,0n 8.t. @ = Pp N P1 R - Rg O = Y.

(Thus, when n = 1, this just means ¢ =, 1; when n = 0, it means ¢ = 1.)
4.3. Example. Recalling the formula from Example 1.4, we have

Jyx+y=2)~gIw(z+y=2)y—w =3w(r+w=2),
since the substitution (z 4+ y = 2)[y — w] is clearly safe. Thus

(<Y ANTy(z+y=2)~a (z<y)ATJw(z+w=2)
(hence also =,). However,
yx+y=2)dg Jx(x+y=2)y—2a]=(z+2z=2)

since z € FV(z +y = 2).

Here the « is not a variable assignment; it is just part of the terminology.
5

4.4. Example. We have

VeIy(zr+y=0)=,Vy3z(y+z=0).
Since there are two quantifiers whose variables changed, these formulas cannot be ~,; we need at
least two steps. But two steps are not enough: we cannot immediately change the y in 3y (x+y = 0)
to x, since x € FV(z +y = 0). And we cannot immediately change the = in Vx to y either, since the
substitution (Jy (z +y = 0))[z — y] is not safe. Instead, we need to go through a third variable:

Jy(z+y=0) ~q Iz(z+2=0),
whence
(a) Vo Jy (x +y =0) ~q Vo 32 (x + 2 = 0);
and now the substitution (3z (x + z = 0))[z — y] is safe, so
(b) Vedz(x+2=0)~yYy3Iz(y+2=0)
(hence also =,); finally, for similar reasons as in (a),
(c) Vy3z(y+2=0)~, Vy3Iz (y+ 2 =0),
whence by chaining together (a), (b), and (c) we get the desired =,.

We now state the key properties of =,. The proofs are quite tedious and deferred to Section 5.
4.5. Proposition. =, is an equivalence relation on the set of all A-formulas.

The next few results say that “everything important about formulas is well-defined modulo =,”:
4.6. Proposition. =, is a congruence relation with respect to the operations A, V, -, as well as Jx.
4.7. Proposition. If ¢ =, ¢, then FV(¢) = FV ().

4.8. Proposition. If ¢ =, 9, and both have free variables from X, then ¢ ==y 9.

4.9. Proposition. If ¢ =, 1, both have free variables from X, and o : X — LY . (A) with both
¢lo], ¥[o] safe, then ¢[o] =, ¥[o].

We now have the raison d’étre for a-equivalence:

4.10. Exercise.

(a) Inductively define the set of bound variables BV(¢) of a formula ¢.
[For the answer, see the proof of Proposition 4.11 below.]

(b) Prove that if y gets captured during a substitution ¢[o], then
yeBV(@)N |J FV(o(x)).
2€FV(¢)
(c) Prove that for any variable substitution o (even if unsafe), BV(¢[o]) = BV(¢).

4.11. Proposition. For any formula ¢ and infinite X, there is ¢’ =, ¢ such that BV(¢') C X.

4.12. Corollary. For any formula ¢ and substitution o, there is ¢/ =, ¢ such ¢'[o] is safe. Thus,
for each o, the safe substitution operation ¢ — ¢[o] (which is only defined for some ¢) descends to
a well-defined operation on a-equivalence classes of formulas [¢],.

4.13. Exercise.

(a) Show that Exercise 4.10(b) provides only a rough upper bound on which variables are
captured, by giving an example of a ¢, o and y belonging to that set, yet y is not captured.
6

(b) Give a more precise characterization of variable capture, by defining, for each formula ¢ and
xz € FV(¢), a set of variables BV (), such that for any substitution o, ¢[o] captures y iff

ye |J (BV.g)NFV(o(x))).
2EFV(9)

Finally, given ¢, v, to figure out whether or not ¢ =, 1, the definition is not that useful, since there
could be an arbitrarily long “path” of =,’s between them. The following alternate characterization
says that we may instead traverse the inductive structure of ¢, themselves:

4.14. Proposition (structural characterization of =,). Let ¢ =, 9.
(a) If ¢ is atomic, T, or L, then ¢ = 1.
(b) If ¢ is a conjunction, then so is ¢, and we have
= N =0 NP =4
for some ¢’ =, ¢ and ¢" =, "
(c) If ¢ is a disjunction, then so is 1, and we have
p=¢' Ve = Vi =1
for some ¢’ =, ¢’ and ¢" =, ¢".
(d) If ¢ is a negation, then so is ¢, and we have
6= ¢ =0 v =
for some ¢’ =, v'.
e is an existential, then so is ¥, and we have
(e) If ¢ 1, th ¢, and we h
¢ =T ~o Iz 2] =0 FY [y o 2] ~va Ty =9
for some ¢',1’, such that ¢'[x — 2] =, ¥'[y — 2] for any variable z witnessing both of the
outer ~g’s (i.e., z € FV(¢') UFV (') U {z,y} and ¢'[z — z],¢'[y — 2] are safe).
4.15. Example. We claim that
Ve(0<z—=3yly-y=2)) Z V2 (0<2z— 3z (z-2=2)).

Informally, this is because the last on the LHS “refers” to the outermost quantifier, while the
last z on the RHS, which is in the same “position”, refers to the innermost quantifier; but if two
formulas are a-equivalent, then the variables in the same “positions” must either both be free and
equal, or both be bound by quantifiers in the same “positions”. (See also Section 6 below.)
Formally, we may disprove the above a-equivalence by using Proposition 4.14 to “zone in” on
the position of the variables that refer to two different things. Indeed, if the =, held, then by
Proposition 4.14(e) (along with (d), using that V is an abbreviation for =3-), we must have

0<y—Jyly-y=w)=0<y—3z(z-2=2);
now by (c),
Wy -y=w)=4 32(2-2=2),

which is false because the two sides have different free variables (Proposition 4.7), or because we
can apply (e) again to get

which is false by (a).

5. PROOFS ABOUT «a-EQUIVALENCE

Proof of Proposition 4.5. The main thing to check is that ~, is symmetric. We claim that if
Jx ¢ ~o Jydlz — y|] where y € FV(¢) U {z} and ¢[x — y] is safe,
then also
Jy plx > y| ~q FT [z — ylly — x] where x € FV(¢p[x — y]) U{y} and ¢z — y|[y — z] is safe,

which is enough because ¢[z — y|[y — x| = ¢[z — z] = ¢ by Exercise 3.4. We have
FV(¢[z = y]) € (FV(¢) \ {z}) U{y}

by Exercise 3.6, which clearly does not contain under our assumptions on y. Thus the only thing
to check is that ¢[x — y|[y — z] is safe, which we do by induction on ¢:

e If ¢ is atomic, T, or L, then this is trivial.

e Suppose that y € FV(¢) U {z} and ¢[z — y] safe imply that ¢[x — y][y — z] is safe, and
same for ¢p. Then y € FV(¢p A) U{z} = FV(¢) UFV(¢) U {x} and (¢ A)z — y| safe
imply that y & FV(¢) U{z}, y € FV(¢) U{z}, and ¢[x — y], [z — y] are safe, which by
the IH imply that (¢ A ¢)[x — y]ly — z| = ¢[z — Y]y — x] A Y[z — y]ly —] is safe.

e Similarly for Vv, —.

e Finally, suppose y € FV(¢) U {z} and ¢[x — y] safe imply ¢[z — y][y — z] safe. Then if

y € FV(3z¢) U {x} and (3z ¢)[x — y] safe,

the former means y & (FV(¢) \ {z}) U {z}, while the latter means either:
— x ¢ FV(3z¢), in which case (3z ¢)[x — y] = Iz ¢, and so further substituting y — x
also has no effect by the former assumption, hence is trivially safe; or
—x € FV(3z¢) = FV(¢) \ {z}, in which case safety means y # z and ¢[x — y] is
safe, whence the former assumption becomes y € FV(¢) U {x, z}, whence by the IH,
o[z — y][y — x] is safe, whence so is (Iz ¢)[z — y][y — z] = (Fz Pz — y])[y — z] =
Az ¢[x — y]ly — z] since x # z.
In both cases, we get that (3z ¢)[x — y|[y — z] is safe, as desired.
This completes the proof that ~ is symmetric. It is now obvious from the definition of =, that
it is also symmetric, hence =, is symmetric, by reversing the “path” of =,’s; and clearly =, is
reflexive and transitive.]

Proof of Proposition 4.6. If ¢ =, 9, then there is a “path” ¢ = ¢g =o 1 Xo -+ T O = ¥; by
definition of =, we then have ¢ A0 ~, d1 A0 =, - - =4 WAO, and similarly for the other connectives
and dz.]

Proof of Proposition 4.7. Suppose 3z ¢ ~, Ty ¢[z — y] with y € FV(¢) U {x}, ¢[z — y] safe. Then

FV(@3y oz = y]) = FV(olz = y]) \ {y}-
If x ¢ FV(¢), this is FV(¢) \ {y} = FV(¢) = FV(3x ¢) since z,y & FV(¢). Otherwise, it is
= ((FV(¢)\{z})U{y}) \ {y} by Exercise 3.6

=FV(¢)\ {z} since y ¢ FV(¢)
=FV(3x ¢).

So ~ implies same free variables; by a trivial induction, so do =, and =,. O
8

Proof of Proposition 4.8. Suppose 3z ¢ ~, Jy ¢[z — y] with y € FV(¢) U {x}, @[z — y] safe. Then
M, do¢ <= Jae M st. M=, .. ¢
M, oz =yl < JaeMst. My, ., oy
= Ja € M st M = M(a(yoay) @

by Proposition 3.3; recalling that (by Convention 1.3) x + y really means idx (x — y), we get that

(z = y)M(aly — a)) : X U{y} = M maps z — y™(aly — a)) = a and all other z € FV(¢) \ {z}

to 2M(a(y + a)) = a(z), since y € FV(#). So the first and third RHSs above are equivalent.
Thus ~, implies semantically equivalent; by a trivial induction, so do ~, and =,. O

Proof of Proposition 4.11. By induction on ¢.

e If ¢ is atomic, T, or L, then BV(¢) = &, so ¢’ := ¢ works

o If ¢/ =, ¢ and ¢/ =, ¥ with BV(¢'),BV(¢’) C X, then ¢/ A ' =, ¢ A ¢ (using Proposi-
tion 4.6) with BV (¢ A¢') = BV(¢/) UBV(¢') C X.

e Similarly for Vv, —.

e Finally, suppose the claim holds for ¢; we prove it for 3z ¢. Pick any 2’ € X \ {z} \ FV(¢),
and find ¢’ =, ¢ with BV(¢') C X \ {z’}. Then ¢'[x — 2] is safe by Exercise 4.10(b), and
¥ € FV(¢) U{x}, so we have 32’ ¢'[x — 2'] ~o Tz ¢’ =, T ¢ with BV(Ta' ¢'[x — 2']) =
BV(¢'[z — 2/]) U{z'} = BV(¢') U {2’} C X by Exercise 4.10(c). O

Proof of Corollary 4.12. By Proposition 4.11, let ¢' =, ¢ with BV(¢’) disjoint from the finite set
Uservig) FV(0(2)) = Uyerv(e) FV(o(2)) (by Proposition 4.7); then no variable gets captured by
¢'[o] by Exercise 4.10(b). O

5.1. Exercise. A formula ¢ satisfies the Barendregt variable convention if the variables bound
by different quantifiers in it are all distinct from each other and from all free variables.

(a) Define what this means precisely.
(b) Prove that any formula ¢ is a-equivalent to one satisfying the Barendregt variable convention.

It remains to prove Propositions 4.9 and 4.14.

5.2. Exercise. Try to prove Proposition 4.9 directly, similarly to the proof of Proposition 4.8, by
first proving it for ~, then for ~,, then for =,. You will probably run into a “chicken-and-egg”
type of obstacle.

Intuitively speaking, the issue here is that the =, between the two original formulas may be derived
via a “path” of a,’s which is highly disorganized. This is why it’s convenient to simultaneously
prove Proposition 4.14, which tells us that the =, may be derived in a much more organized manner
which reflects the inductive structure of the formulas in question.

Proof of Propositions 4.9 and 4.14. Since ¢ =, ¥, let
¢:¢0 %agbl Na " R (an:d]

In Proposition 4.14(e), we will first prove the weaker statement where z may be any variable
outside of some finite set (while (e) says it is enough to take any z not appearing free in ¢', ¢’ and
also making ¢'[z — z],¢[y — z] safe). We proceed by induction on the height of ¢. (Any other
numerical measure of “size” of a formula, according to which a subformula is strictly smaller, and a
formula obtained by substituting variables for variables has the same size, would work just as well.)

e If ¢ is atomic, T, or L, there is no clause in Definition 4.2 of =, which yields ¢ = ¢g ~, ¢1;

thus the above sequence must have length n = 0, i.e., ¢ = v, whence clearly ¢[o] = ¥[o].
9

o If p = ¢/ A ¢”, then by considering the possibilities in Definition 4.2 for ¢ = ¢g ~, ¢1, we

must have ¢1 = ¢} A ¢] where either ¢} ~, ¢| and ¢ = ¢}, or ¢ = ¢} and ¢f ~, ¢f;

in either case, we get ¢ =, ¢} and ¢ =4 ¢]. Now apply similar reasoning to ¢1 ~q @2,

b2 ~q ¢3, ete., to eventually get that ¢ = ¢’ A" with ¢/ =, ¢’ and ¢" =, ¢”. Thus
¢lo] = ¢'[o] A ¢"[o]
=4 ¥'[o] AY"[o] by IH and Proposition 4.6
= 1[o].
e The cases V and — are similar.

e Finally, suppose ¢ = Jx ¢/. There are two possibilities for ¢ = ¢g ~, ¢1: either
6=Fd ~oIydfe syl = b1 with y & FV(¢) U {a} and [z — y] safe,
or
¢=30d ~a3rdh =1 with ¢ ~a &;

in both cases, call 3x1¢) := ¢1. Similarly breaking down ¢1 =, P2, P2 = @3, ete., we get

o= E|$¢, = EI-%'O(bé) R J11 ?bll Na E|332¢/2 Ra " Ra 337“(?;1 = Eiywl =9
%0 é1 $2 ¢

where each =, is either because of ~, (in which case the variables are different), or because
the inner formulas satisfy =, (in which case the variables are the same).

Let z be any variable which is not any of the x;’s, and does not occur free or bound in
any of the ¢}’s; thus by Exercise 4.10(b), each ¢.[z; — z] is safe. For each of the above ~,’s,
say 3x; o5 Ro i1 ¢y, we claim that @[z — 2] =4 @) [Tip1 — 2]:

— If 3o ¢ ~o Fwig1 &, with i1 € FV(¢)) U {x;} and ¢}, = ¢;[z; — xiq1], then

Gir[Tizr = 2] = dilws = wip] (i1 = 2] = Gifws = 2]

using Exercise 3.4 (where (x; — xit1)[zit1 — 2| = (z; — 2), since z;11 & FV(¢))).
— Otherwise, 3z; ¢ = 3riy1 ¢, holds because z; = ;11 and ¢; =4 ¢j, ;. Then

Gili = 2] Za Gipq[Tivs — 2]

since these substitutions are safe, and the IH gives us Proposition 4.9 for ¢} =, ¢},;.
We have shown

Oz 2] = ghlro = 2] =a dir1 = 2] =0 - =0 Blan = 2] =Y [y = 2]

for all but finitely many z, which proves the weaker version of Proposition 4.14(e).

To complete the induction, we need to prove Proposition 4.9 for ¢ = 3x ¢’ =, Jy Y’ = 9.
By restricting o, we may assume X = FV(3z¢') = FV(3y¢’). Let z be one of the all-but-
finitely-many variables as above, which is also not in either X or any term in the image of
o. Then since ¢'[x — z] =, /[y — 2| as shown above, and ¢'[z — z| has the same height
as ¢’ which is strictly less than that of ¢, we may apply the IH to get

¢z = 2llo] =a ¢'[y = 2]l0],
10

whence
(Fz ¢)[o] = 3z ¢f[o(z >)]
~a 2@ [o{x — z)][r — 2] since z does not appear free or bound in ¢
=3z ¢ [o(x — 2)] by Exercise 3.4, since z does not appear in im(o)
= 3z ¢'[z > 2][0] by Exercise 3.4, since z ¢ X
=o I2¢Y'[y = 2][o]
~a (Fy)|o] similarly.

We have now proved Proposition 4.9, as well as Proposition 4.14 with the weaker version of (e). To
prove the original (e), where z is any variable such that ¢'[z — z] and ¢'[y — z] are both safe: by
the weaker version, we may find some other variable 2’ &€ FV(¢’) UFV(¢') such that

O 2 =0 [y 2]
and these substitutions are both safe; now apply Proposition 4.9 and Exercise 3.4 to get
e 2] = e [= 2] =0 ¥y — 2] = 2] =9 [y — 2]. O
6. CLEANER APPROACHES TO VARIABLE BINDING

Recall the two formulas from Example 4.15:

(6.1) Ve(0<z—Jyly-y=2)) Z, V2 (0< 2z — Jz(z- 2 = 2)).
These have the following parse trees (ignoring our conventions V := —3— and ¢ — 1) := =g V 9):
Yx N Vz
— ,' SN — ' 3z
/ \ /l/ // / : /I / \ /l/ /// / \:\ \I\
0 x S [T 0 2 S Iz
Y AV,
Y Y z z

We may think of the only purpose of the bound variables as specifying the label of the quantifier
node above which binds them (dashed curves). If we draw these curves, then we may erase the
bound variables as well as the quantified variables entirely, leaving behind the graphs with cycles

Voo N

/l N /l

1 S 1

l \ . :

Ir El \\ Ir El
| AR \ h /

\ \

AN

’ [N

’

! !

\

IN— 1
IN— 1

\

\ \
\ Il
l
I
1

’ ’
’ ’
’ ’
’ ’
/ | / /
/ 1 / / /
/ / / /
/ / 0 / /
! / ! /
! / ! /
1 / 1 /

which make it obvious when two formulas are a-equivalent: iff the two graphs are the same.
This begs the question: why not take these graphs as our formal representation of formulas to
begin with, so that there’s no need to even speak of a-equivalence? The problem is, unlike trees,
11

h h [N
/ = / = '
f f (I
[
\
N\!
/ / |

0 4 \

graphs aren’t a type of inductively constructed mathematical object. Since we definitely want to be
able to do induction on formulas, we need to break these cycles somehow, yielding the above trees.

There is in fact a cleverer way to break and label these cycles. Instead of assigning an arbitrary
letter like x, vy, 2 as a label, we can label each leaf with its distance to its binder above it:>

Voo v
. N .
/’ \ AN /’ \
I N I
ll 3 \\ ll 3
! o \ ! AN
7 7 vy
/ /

! \ \ !

/ \

!
!

/NS S
0 3 ,// . I/
VARNY.
3 3

If we “flatten” these trees again into linear expressions, we get
V(0<3—-3(3-3=3)#V7Y(0<3—3(3-:3=2))

with =, again becoming simply syntactic equality. This elegant representation of first-order formulas
is known as de Bruijn indices, and is commonly used by compilers, proof checkers, and other
computer programs that need to manipulate syntax precisely. But unfortunately, these expressions
with numerical indices are much harder for a human mathematician to parse than usual formulas as
in (6.1)! (Note, for instance, that the 3’s on the LHS don’t all represent the same variable, while
the second and third 3’s and last 2 on the RHS do represent the same variable. Counting only
quantifiers as in Footnote 2 doesn’t help much; the first 1 and last 2 on the LHS would represent
the same variable.)

!
!
!

/NS S
3 0 3 ,/ . ;
VARNY
3 3

IN— 1
IN— |

\ [N

_ \ VA

— 1 —
\ [
| Lo
I N1
[

' 2

2The label should also specify clearly that the number represents a bound variable, rather than a constant symbol
like 0; for example, we could write vs instead of just 3. Another common variation is to only count quantifier nodes,
instead of all nodes on the path up to the binder; the tree on the left would have leaf labels 1,1, 1,2 instead.
12

	1. Unsafe substitution
	2. Substitution and interpretation
	3. Safe substitution
	4. α-equivalence
	5. Proofs about α-equivalence
	6. Cleaner approaches to variable binding

