
FIRST-ORDER LOGIC

1. First-order formulas

First-order logic is an extension of propositional logic allowing us to express statements about
elements, instead of just pure statements. Here is an example of a first-order formula:

∀x ((0 ≤ x) → ∃y ((0 ≤ y) ∧ (y · y = x)))
There are several new syntactic constructions available, compared to propositional logic:

• There are two types of expressions: formulas like y ≥ 0, which express statements (true or
false), as well as terms like y · y, which denote elements rather than statements.

• Both formulas and terms may depend on variables like x, y. In other words, a formula
y · y = x represents not a single truth value but rather a relation (binary in this case).

• Quantifiers like ∀, ∃ allow us to bind variables in formulas: for example, the formula
∃y ((0 ≤ y) ∧ (y · y = x)) no longer depends on y.

• There are some atomic symbols like ≤, called relation symbols, to be specified in the
alphabet A, that can be used to combine terms into formulas. (= can also be regarded as a
binary relation symbol, although it plays a rather special role.)

• There are some other atomic symbols like ·, called function symbols (or operation
symbols), also specified by A, that can be used to combine terms into other terms. 0 above
can also be regarded as a (0-ary) function symbol.

The formal definition is as follows.

1.1. Definition. A first-order signature is an alphabet A together with, for each P ∈ A, two
additional pieces of data:

• a classification of P as either a relation symbol or a function symbol;
• an arity n ∈ N; we call P n-ary (or binary when n = 2, unary when n = 1, etc.).

A 0-ary (or “nullary”) function symbol is also called a constant symbol. We write
Arel := {relation symbols in A} ⊆ A,
Afun := {function symbols in A} ⊆ A,
An

rel := {n-ary relation symbols} ⊆ Arel,

An
fun := {n-ary function symbols} ⊆ Afun.

Thus, formally, a first-order signature consists of a set A equipped with a partition

A =
⊔
n∈N

An
rel ⊔

⊔
n∈N

An
fun

= A0
rel ⊔ A1

rel ⊔ · · · ⊔ A0
fun ⊔ A1

fun ⊔ · · · .
However, in practice, we usually just list out the elements of the alphabet A, and then say in words
what type of symbol each element is; for familiar symbols, like ≤,+, we usually take them to be of
the familiar type and arity.

1.2. Example. The signature of graphs is Agraph := {E}, where E is a binary relation symbol.

1.3. Example. The signature of posets is Aposet := {≤}, where ≤ is a binary relation symbol.
Note that this is identical to the signature of graphs, except for the symbol we chose to use.

1

1.4. Remark. The preceding two examples indicate an important point: a signature can only specify
what the relations/operations are; it cannot specify how they behave. For example, Aposet does not
specify transitivity of ≤ in any way. In order to specify axioms that the relations/operations have
to obey, we need a first-order theory (see Section 2.B below).

1.5. Example. The signature of fields is Afield := {+, 0,−, ·, 1} where the symbols are, respectively,
(2, 0, 1, 2, 0)-ary function symbols (so 0, 1 are constant symbols).

(We do not include a symbol for /, because division is not an everywhere-defined operation; we
can only require that nonzero elements in a field must have a multiplicative inverse, via an axiom in
the theory of fields (see Example 2.31 below). Thus, this signature could just as well be called the
signature of rings Aring, illustrating again the preceding remark.)

1.6. Example. The signature of ordered fields is Aordfield := Afield ∪ Aposet = {+, 0,−, ·, 1,≤}.

1.7. Example. The signature of (R-)vector spaces is Avec := {+, 0,−} ∪ {a· | a ∈ R}, where
+, 0,− are as in the signature of fields above, while for each a ∈ R, a· is a single unary function
symbol (referring to scalar multiplication by a). So Avec is an infinite (indeed uncountable) signature.

(It would not make sense to treat · as a binary function symbol if we want to use this signature
to describe vector spaces, since scalar multiplication does not take two vectors in a vector space V
to another vector.)

1.8. Definition. Let A be a first-order signature. Fix also another alphabet V, whose elements we
call variables. The A-terms with variables from V are constructed inductively as follows:

• Every x ∈ V is an A-term.
• If f ∈ An

fun is an n-ary function symbol, and t1, . . . , tn are terms, then so is f(t1, . . . , tn).
The (first-order) A-formulas with variables from V are constructed inductively as follows:

• If R ∈ An
rel is an n-ary relation symbol, or the symbol = when n = 2, and t1, . . . , tn are

A-terms, then R(t1, . . . , tn) is an A-formula, called an atomic formula.1
• If ϕ, ψ are A-formulas, then ϕ ∧ ψ, ϕ ∨ ψ,¬ϕ are A-formulas.
• ⊤,⊥ are A-formulas.
• If ϕ is an A-formula, and x ∈ V is a variable, then ∃xϕ is an A-formula.

We continue to use the abbreviations →,↔ as in propositional logic, as well as
∀xϕ := ¬∃x¬ϕ.

(The reason for regarding ∀ as an abbreviation, rather than ∃, is similar to why we chose to regard
→ as an abbreviation in propositional logic, but not ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), say: we will use them to
illustrate different aspects of our proof system for first-order logic. Indeed, there is a sense in which
∀ is analogous to → and ∃ to ∨; see Remark 3.18 and Example 3.26 below.)

1.9. Example. Let x, y ∈ V be variables. The following is an Aordfield-term:
+(1, ·(x, y))

When we are dealing with signatures consisting of familiar symbols like +, ·, we will write terms
and formulas in the familiar way; e.g., the above term would usually be written

1 + x · y.
Likewise, the Aordfield-formula given at the beginning of this section is a more familiar way of writing

∀x (≤(0, x) → ∃y (≤(0, y) ∧ =(·(y, y), x))).
1There is an abuse of notation going on here: for two terms s, t, “s = t” may denote either the “meta” assertion

that these two terms are the same (as expressions), or the atomic formula s = t! Some logic books therefore use a
different symbol (like ≡) for the equality formula. We will instead depend on context to disambiguate.

2

1.10. Example. The following are not Aordfield-formulas:
≤(x, y, z) (≤ is binary, not ternary)
∀x (x+ y · y) (∀x must be followed by a formula, not a term)
∀x (⊥ ≤ x · x) (the LHS of ≤ must be a term, not a formula)
∀x (

√
x ·

√
x = x) (no

√
symbol in Aordfield)

∀x (2 + x = x+ 2) (no 2 symbol in Aordfield)
However, we might treat the last formula as an abbreviation for

∀x ((1 + 1) + x = x+ (1 + 1)).
On the other hand, the following are Aordfield-formulas:

0 = 1 (will be interpreted as false)
∃x⊤ (will be interpreted as “the model is nonempty”)
0 ≤ x → ∀x ∃x (x ≤ 0) (nothing in definition of formula prevents variable clashes)

1.A. Free and bound variables. The last example above shows that in order to interpret formulas
correctly, it is important to pay attention to which variables occur underneath quantifiers.

An occurrence of a variable underneath a quantifier in a formula is called bound; a free variable
in a formula is a variable which occurs non-bound (at least once). Since terms do not contain
quantifiers, all variables in terms are considered free. Formally:

1.11. Definition. The set of free variables FV(t),FV(ϕ) of a term t or formula ϕ is defined
inductively as follows:

FV(x) := {x},
FV(f(t1, . . . , tn)) := FV(t1) ∪ · · · ∪ FV(tn) for f ∈ An

fun and terms t1, . . . , tn,

FV(R(t1, . . . , tn)) := FV(t1) ∪ · · · ∪ FV(tn) for R ∈ An
rel (or R = =) and terms t1, . . . , tn,

FV(ϕ ∧ ψ) := FV(ϕ ∨ ψ) := FV(ϕ) ∪ FV(ψ),
FV(¬ϕ) := FV(ϕ),
FV(⊤) := FV(⊥) := ∅,

FV(∃xϕ) := FV(ϕ) \ {x}.
(Compare with the definition of AT(ϕ) in Example 1.14 from propositional logic.) It follows that

FV(ϕ → ψ) = FV(¬ϕ ∨ ψ) = FV(ϕ) ∪ FV(ψ),
FV(ϕ ↔ ψ) = FV(ϕ) ∪ FV(ψ),

FV(∀xϕ) = FV(¬∃x¬ϕ) = FV(ϕ) \ {x}.
A formula is called a sentence if it has no free variables.

1.12. Example. To compute the free variables of the Aordfield-formula from page 1:

∀x (
FV={x}
⏞(0 ≤ x) → ∃y (

FV={y}
⏞(0 ≤ y) ∧

FV={x,y}
⏞(y · y = x))︸ ︷︷ ︸

FV={y}∪{x,y}={x,y}︸ ︷︷ ︸
FV={x,y}\{y}={x}

)

︸ ︷︷ ︸
FV={x}∪{x}={x}︸ ︷︷ ︸

FV={x}\{x}=∅
3

1.13. Exercise. Compute the free variables of the following formulas:
(a) (0 ≤ x) → ∀x ∃x (x ≤ 0)
(b) (∀x (x ≤ x · y)) ∨ (∃y (x · y ≤ y))
(c) ∀x ((∀y (x ≤ y · z)) → ∃x (x+ y = z))

The set of free variables in a formula is much more important than what all the variables are,
since bound variables may be changed without affecting the meaning of the formula: for example,

∃y (x+ y = 0) vs. ∃z (x+ z = 0)

should always have the same meaning. (Of course, as always, these two formulas are not quite equal,
but only “equal mod bound variables”, or α-equivalent; see the Appendix on variable substitution.)
For this reason, from now on, we will never mention the set V from which all variables are drawn;
we will only ever care what the free variables of a formula are. For any set of variables X, we write

LXterm(A) := {A-terms t | FV(t) ⊆ X},
LXform(A) := {A-formulas ϕ | FV(ϕ) ⊆ X},

and call these the set of t, ϕ respectively with free variables from X.2

1.14. Remark. It is important to note that when we say ϕ has free variables from X, we do not
actually require each x ∈ X to occur in ϕ; we only care that no other variables can occur free in ϕ.
This is usually more important than knowing which free variables actually do occur: for example,
as long as ϕ has free variables from {x, y}, then ∀x ∃y ϕ will be a sentence.

2. First-order semantics

2.1. Definition. Let A be a first-order signature. An A-structure M consists of:
• an underlying set (also called domain or universe), denoted M or |M|;
• for each n-ary relation symbol R ∈ An

rel, an n-ary relation RM = M(R) on M ;
• for each n-ary function symbol f ∈ An

fun, an n-ary function fM = M(f) : Mn → M .
We call RM, fM the interpretation of R, f in M.

Here Mn denotes the n-fold Cartesian product (set of n-tuples)
Mn := M × · · · ×M = {(a1, . . . , an) | a1, . . . , an ∈ M}.

When n = 0, M0 = {()} is a one-element set consisting of the empty tuple (). An 0-ary function
f : M0 → M thus consists of simply an element f(()) ∈ M ; we usually identify f with f(()). Thus,
each constant symbol c ∈ A0

fun is interpreted as simply an element cM ∈ M .
An n-ary relation R on M may be represented in multiple ways:

• R may be thought of as a subset R ⊆ Mn, namely the set of all n-tuples at which R holds.
For example, the equality relation on M is represented as

(=M) = {(a, b) ∈ M2 | a = b} ⊆ M2

= {(a, a) | a ∈ M}.

To say that R holds at a tuple a⃗ = (a1, . . . , an) then means that a⃗ ∈ R.

2A terrible but very common abuse of notation that one sees in first-order logic is to write ϕ(x, y, . . .) for a formula
with free variables among x, y, . . ., and then write ϕ(a, b, . . .) when “plugging in” a, b for x, y (either syntactically, via
substitution as in the Appendix, or semantically, as in Definition 2.13). This is terrible because the mathematical
object ϕ does not “know” that x is its first variable, y is its second, etc.; formally, it does not make sense to distinguish
between ϕ(x, y) and ϕ(y, x). It is best to avoid this notation in any serious discussion of the syntax of formulas.

4

• R may also be thought of as a function R : Mn → {0, 1}, which specifies whether or not R
holds at each n-tuple. For example, the equality relation on M is represented as

(=M) : M2 −→ {0, 1}

(a, b) 7−→

{
1 if a = b,

0 if a ̸= b.

To say that R holds at a⃗ then means that R(⃗a) = 1.
Given a subset R ⊆ Mn, the corresponding function to {0, 1} is its indicator function (or
characteristic function)

(2.2)

𝟙R : Mn −→ {0, 1}

a⃗ 7−→

{
1 if a⃗ ∈ R,

0 otherwise.

The correspondence R 7→ 𝟙R is a bijection between the set P(Mn) of all subsets of Mn, and the
set {0, 1}Mn of all functions Mn → {0, 1} (see the Appendix); thus we may think of either of these
as representing the relation R. By an abuse of notation, we will henceforth identify these two
representations. Roughly speaking, they correspond to the “satisfaction predicate m |= P” versus
“truth value m(P)” views of propositional semantics, which are both convenient in different contexts.

2.3. Example. We have a Aordfield-structure R with underlying set R and each symbol in Aordfield
interpreted as the usual operation or relation of that name, e.g., +R : R2 → R is the binary addition
function. Similarly, we have a Aordfield-structure Q consisting of Q and the usual interpretations.

2.4. Example. We have a Aordfield-structure M with underlying set R and
+M := usual +,
0M := usual 0,
−M := usual sin,
·M := usual +,
1M := usual π,

≤M := usual =.

(Nothing in the definition of Aordfield-structure says that the field axioms like commutativity, etc.,
have to hold; this will be enforced by the first-order theory of fields, see Example 2.31.)

2.5. Example. Similarly, a Aposet-structure M is a set M equipped with an arbitrary binary relation
≤M ⊆ M2 (not yet required to be a partial order).

2.6. Example. For A = ∅, an A-structure is just a set.

2.A. Interpretation of terms and formulas. Let M be an A-structure. In order to interpret
a term or formula in M, we need to know what values are assigned to its free variables; in other
words, the interpretation will be a function defined on the set of all variable assignments (to either
M or {0, 1}, depending on whether we have a term or a formula).

By a variable assignment in M , we just mean a function α : X → M from a set of variables X.
The set of all X-indexed variable assignments is thus MX , the set of all functions from X to M .
Note that we can also think of α : X → M as an “X-ary tuple” of elements of M , namely (α(x))x∈X ;
this allows us to think of the interpretation of terms and formulas as generalizing the interpretation
of function and relation symbols in A (which yield functions Mn → M or Mn → {0, 1}).

5

2.7. Definition. We begin with the interpretation of terms. For each A-term t ∈ LXterm(A) with
free variables from some set X, we will define by induction on t a function

tM = tMX = MX(t) : MX −→ M,

called the interpretation of t in M, which maps each variable assignment α ∈ MX to an element
tMX (α) ∈ M , called the interpretation of t in M under the variable assignment α:

• For a single variable x ∈ LXterm(A) with free variables from X, this means x ∈ X; we define

xM(α) := α(x).

• For a term f(t1, . . . , tn) ∈ LXterm(A) where f ∈ An
fun and t1, . . . , tn ∈ LXterm(A), we define

f(t1, . . . , tn)M(α) := fM(tM1 (α), . . . , tMn (α))

(recall that fM : Mn → M is provided as part of the structure M).

2.8. Example. In the Aordfield-structure M = R with weird operations from Example 2.4,

((−1) · (x+ y))M(x 7→ 3, y 7→ 5)
= (−1)M(x 7→ 3, y 7→ 5) ·M (x+ y)M(x 7→ 3, y 7→ 5)
= (−M1M(x 7→ 3, y 7→ 5)) + (xM(x 7→ 3, y 7→ 5) +M yM(x 7→ 3, y 7→ 5))
= sin(π) + (3 + 5) = 8.

2.9. Exercise. Verify that this is the same as ((−1) · x+ (−1) · y)M(x 7→ 3, y 7→ 5).
Is it also the same as ((−x) + (−y))M(x 7→ 3, y 7→ 5)?

2.10. Remark. You will probably have noticed all of the redundant variables we had to keep writing
in the above example. Strictly speaking, this is necessary, since the inductive case of Definition 2.7
for e.g., (x+ y)M refers to xM and yM with respect to the same set of free variables {x, y}. Indeed,
strictly speaking the notation xM is ambiguous in the absence of a variable assignment (as in
xM(x 7→ 3, y 7→ 5)): it could mean xM

{x,y} : M{x,y} → M , or xM
{x} : M{x} → M , which are entirely

different functions with different domains. Hence, officially we should include the set of variables in
the subscript, for clarity.

Fortunately, the following shows that when the term or formula does not mention all of the
available free variables, then the interpretation under a particular variable assignment α stays the
same when we drop the extraneous variables. Thus for example, above it would’ve been safe to
write (−1)M() instead of (−1)M(x 7→ 3, y 7→ 5), and xM(x 7→ 3) instead of xM(x 7→ 3, y 7→ 5), etc.

2.11. Exercise. Let α : Y → M be a variable assignment and X ⊆ Y .
(a) If a term t only has free variables from X, then tMX (α|X) = tMY (α).
(b) If a formula ϕ only has free variables from X, then ϕM

X (α|X) = ϕM
Y (α) [as defined below].

2.12. Definition. When interpreting formulas, in the ∃ case, because the subformula has one more
free variable, we will need to extend our given variable assignment to include that extra variable.
We therefore introduce the following general notation: for a function α : X → M , a variable x
(which may or may not be in X), and an element a ∈ M ,

α⟨x 7→ a⟩ : X ∪ {x} −→ M

y 7−→

{
a if y = x,

α(y) if y ∈ X \ {x}.

In other words, we add the assignment x 7→ a to α, replacing the previous value of α(x) if any.
6

2.13. Definition. We now give the interpretation of formulas. For an A-formula ϕ ∈ LXform(A) with
free variables from X, its interpretation ϕM

X = MX(ϕ) in M will be an “X-ary relation” on M ,
hence as noted above (2.2) may be represented as either a set of “X-ary tuples”

ϕM = ϕM
X = MX(ϕ) ⊆ MX

or its indicator function
ϕM = ϕM

X = MX(ϕ) : MX −→ {0, 1}.
If ϕM(α) = 1, i.e., α ∈ ϕM

X , then we say that M satisfies ϕ under α, also denoted

M |=α ϕ :⇐⇒ ϕM(α) = 1 ⇐⇒ α ∈ ϕM
X .

We will give the inductive definition using all three of these equivalent notations at once.
• For ϕ = R(t1, . . . , tn) ∈ LXform(A) where R ∈ An

rel and t1, . . . , tn ∈ LXterm(A), we define

R(t1, . . . , tn)M(α) := RM(tM1 (α), . . . , tMn (α)),
similarly to the inductive case for terms in Definition 2.7. Equivalently,

M |=α R(t1, . . . , tn) :⇐⇒ (tM1 (α), . . . , tMn (α)) ∈ RM,

R(t1, . . . , tn)M := (tM1 , . . . , tMn)−1(RM)

where the RHS on the last line denotes the preimage of RM ⊆ Mn under the function
(tM1 , . . . , tMn) : MX → Mn whose coordinates are the tMi : MX → M .

When R is the equality symbol =, we always take =M to be the equality relation, i.e.,
the set or function =M defined in the discussion before (2.2), or equivalently,

M |=α s = t :⇐⇒ sM(α) = tM(α).

• The connective cases are the same as in propositional logic: for ϕ, ψ ∈ LXform(A),
(ϕ ∧ ψ)M(α) := min(ϕM(α), ψM(α)),
(ϕ ∨ ψ)M(α) := max(ϕM(α), ψM(α)),

(¬ϕ)M(α) := 1 − ϕM(α),
⊤M(α) := 1,
⊥M(α) := 0.

Equivalently,
M |=α ϕ ∧ ψ :⇐⇒ M |=α ϕ and M |=α ψ, (ϕ ∧ ψ)M := ϕM ∩ ψM,

M |=α ϕ ∨ ψ :⇐⇒ M |=α ϕ or M |=α ψ, (ϕ ∨ ψ)M := ϕM ∪ ψM,

M |=α ¬ϕ :⇐⇒ M ̸|=α ϕ, (¬ϕ)M := MX \ ϕM,

M |=α ⊤ always, ⊤M := MX ,

M |=α ⊥ never, ⊥M := ∅.

• Finally, suppose ∃xϕ ∈ LXform(A); then from Definition 1.11 of free variables, we have
X ⊇ FV(∃xϕ) = FV(ϕ)\{x}, whence X ∪{x} ⊇ FV(ϕ), so that (by the IH) we may assume
given the interpretation of ϕ under any (X ∪ {x})-variable assignment. We then define

(∃xϕ)M
X (α) := max

a∈M
ϕM
X∪{x}(α⟨x 7→ a⟩)

(where by convention, the max is 0 if M = ∅). In other words, we interpret ∃xϕ as true iff
there is some a we can assign to x (ignoring any previous assignment in α) to make ϕ true:

M |=α ∃xϕ :⇐⇒ there exists a ∈ M s.t. M |=α⟨x 7→a⟩ ϕ.
7

Only read this paragraph if you’re feeling brave. The definition of (∃xϕ)M
X ⊆ MX

as a set is a bit more involved to describe. Start with ϕM
X∪{x} ⊆ MX∪{x}, and consider the

restriction map (−)|X\{x} : MX∪{x} → MX\{x} which forgets about the value of a variable
assignment at x; then the image ϕM

X∪{x}
∣∣
X\{x} ⊆ MX\{x} is the set of assignments which

can be extended to x satisfying ϕ. But since we also need to ignore any previous assignment
to x, consider also the restriction (−)|X\{x} : MX → MX\{x} (which is either the identity
function if x ̸∈ X, or otherwise is the same as the former restriction); then the preimage of
ϕM
X∪{x}

∣∣
X\{x} is the set of assignments for which we can first discard any previous assignment

to x, and then extend with a new assignment to x satisfying ϕ, which exactly yields (∃xϕ)M
X .

The following diagram depicts this two-step construction of (∃xϕ)M
X from ϕM

X∪{x}:

ϕM
X∪{x} MX∪{x} (∃xϕ)M

X MX

ϕM
X∪{x}

∣∣
X\{x} MX\{x}

⊆

image

(−)|X\{x}
⊆

(−)|X\{x}

⊆

preimage

• Let us also record the interpretation of ∀xϕ := ¬∃x¬ϕ, derived from that of ∃,¬:
(∀xϕ)M

X (α) := min
a∈M

ϕM
X∪{x}(α⟨x 7→ a⟩),

M |=α ∀xϕ :⇐⇒ for all a ∈ M, M |=α⟨x 7→a⟩ ϕ.

(The definition of (∀xϕ)M
X ⊆ MX as a set is similar to that of (∃xϕ)M

X , involving a “coimage”
rather than an image, and is left to you as an Exercise.)

2.14. Example. In the Aordfield-structure R := R with the usual interpretations, consider the
sentence ∀x ∃y (¬(y = x) ∧ (x ≤ y)) under the empty variable assignment:

R |=∅ ∀x ∃y (¬(y = x) ∧ (x ≤ y))
⇐⇒ ∀a ∈ R, R |=x 7→a ∃y (¬(y = x) ∧ (x ≤ y))
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. R |=x 7→a,y 7→b ¬(y = x) ∧ (x ≤ y)
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. (R ̸|=x 7→a,y 7→b y = x and R |=x 7→a,y 7→b x ≤ y)
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. (b ̸= a and a ≤ b)
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. a < b

which is clearly true, since given a, we can take b := a+ 1.
We can also regard ∀x ∃y (¬(y = x) ∧ x ≤ y) as having free variables from {x, y}, hence interpret

it under some assignment of those variables, e.g.,
R |=x 7→3,y 7→2 ∀x ∃y (¬(y = x) ∧ (x ≤ y))
⇐⇒ ∀a ∈ R, R |=x 7→a,y 7→2 ∃y (¬(y = x) ∧ (x ≤ y))
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. R |=x 7→a,y 7→b ¬(y = x) ∧ (x ≤ y)
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. (R ̸|=x 7→a,y 7→b y = x and R |=x 7→a,y 7→b x ≤ y)
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. (b ̸= a and a ≤ b)
⇐⇒ ∀a ∈ R, ∃b ∈ R s.t. a < b

which is true as before. Note that the original values of x, y are “overridden”: e.g., in the second
line, we used

(x 7→ 3, y 7→ 2)⟨x 7→ a⟩ = (x 7→ a, y 7→ 2).
In particular, the formula x ≤ y is never evaluated with the original values x = 3, y = 2.

8

2.15. Exercise. Determine whether or not R |=x 7→1,y 7→2 ∀x ((∃x (y · y = x)) → (∃y (y · y = x))).
2.16. Exercise. Let ϕ be any formula with free variables from X, and let x ∈ X. Verify that for
any M and α : X → M ,

M |=α (∀xϕ) → ϕ.

(This reflects the common situation where you find yourself knowing that “for all x, . . . ”, and
you use this to conclude that . . . holds for an already fixed x. We will see the inference rule that
formalizes this way of reasoning in Example 3.26 below.) What about

M |=α (∃xϕ) → ϕ,

M |=α ϕ → (∀xϕ),
M |=α ϕ → (∃xϕ)?

2.17. Definition. We call ϕ ∈ LXform(A) a semantic tautology (over X), written
|=X ϕ,

if for every A-structure M and variable assignment α : X → M , we have M |=α ϕ. If X = ∅, we
drop the subscript. (When we don’t say “over X”, we typically mean over FV(ϕ).)

We say ϕ ∈ LXform(A) semantically implies ψ ∈ LXform(A) (over X) if
ϕ |=X ψ :⇐⇒ |=X ϕ → ψ,

and that they are semantically equivalent (over X) if
ϕ =||=X ψ :⇐⇒ ϕ |=X ψ and ψ |=X ϕ.

Finally, we say ϕ ∈ LXform(A) is satisfiable (over X) if for some A-structure M and variable
assignment α : X → M , we have M |=α ϕ. Thus

ϕ satisfiable over X ⇐⇒ ̸|=X ¬ϕ.
2.18. Example. ∀x ∀y ∀z ((x = y) ∧ (y = z) → (x = z)) is a semantic tautology, since for any M,

M |= ∀x ∀y ∀z ((x = y) ∧ (y = z) → (x = z)) ⇐⇒ ∀a, b, c ∈ M (a = b and b = c =⇒ a = c)
which is true by transitivity of equality. (So (x = y) ∧ (y = z) semantically implies x = z.)
2.19. Example. (x+ y) + z = x+ (y + z) is not a semantic tautology, since its interpretation in
M := R with +M := subtraction is false, under the assignment x 7→ 0, y 7→ 1, and z 7→ 1, say.
2.20. Remark. The “over X” part of the definition of “semantic tautology” is technically necessary:
if ϕ has free variables from X ⊆ Y , then whether ϕ is a semantic tautology could depend on
whether we regard it has having free variables from X or from Y ; that is, we might not have
|=X ϕ ⇐⇒ |=Y ϕ.

Indeed, consider the sentence ϕ := ∃x⊤ (mentioned in Example 1.10). For any M, we have
M |= ϕ ⇐⇒ ∃a ∈ M s.t. M |=x 7→a ⊤

⇐⇒ ∃a ∈ M,

i.e., ϕ asserts that the underlying set is nonempty. So ϕ is not a tautology as a sentence, i.e., ̸|=∅ ϕ,
since ϕ is false in an empty structure. However, if we instead regard ϕ as having free variables
from some nonempty X, then ϕ is a tautology, i.e., |=X ϕ, since for any M and variable assignment
α ∈ MX , since X is nonempty, M must be nonempty, whence M |= ϕ.

However, the following shows that this issue really does only come up in edge cases:
2.21. Exercise.

(a) Show that if X ⊆ Y , then |=X ϕ =⇒ |=Y ϕ.
(b) Show that the converse holds assuming either X ̸= ∅, or every empty structure satisfies ϕ.

9

2.B. Theories. Let A be a first-order signature, X be a set of variables. An A-theory with free
variables from X is an arbitrary set of formulas T ⊆ LXform(A), called axioms of T . When we
just say A-theory, we typically mean without free variables, i.e., a set of sentences. These latter
ones are the most important kinds of theories that show up in concrete examples; theories with free
variables serve a more theoretical purpose (see Remark 2.40 and Proposition 3.37).

For an A-theory (without free variables) T , a model of T is an A-structure M which satisfies
every axiom of T , denoted

M |= T :⇐⇒ ∀ϕ ∈ T (M |= ϕ).
We denote the collection of all models of T by

Mod(T) := {M | M |= T } = T|= .

As in propositional logic, this is the dual T|= with respect to the Galois connection induced by the
binary relation |= between A-structures and A-sentences. Conversely, for a class of A-structures K,

Th(K) :=
{
ϕ ∈ L∅

form(A)
∣∣ ∀M ∈ K (M |= ϕ)

}
= K|=.

A class K is axiomatizable if it is Mod(T) for some T , in which case in fact K = Mod(Th(K)).
For a theory T , the sentences ϕ ∈ Th(Mod(T)) are the semantic consequences of T .

2.22. Exercise (for set theorists). Show that, in all but the most degenerate cases (which?), Mod(T)
is a proper class, not a set.

2.23. Example. The theory of (simple undirected) graphs is the Agraph = {E}-theory
Tgraph := {∀x¬E(x, x), ∀x ∀y (E(x, y) → E(y, x))}.

An Agraph-structure M = (M,EM), where EM ⊆ M2, is a model of Tgraph iff

∀a ∈ M ((a, a) ̸∈ EM), ∀a, b ∈ M ((a, b) ∈ EM =⇒ (b, a) ∈ EM).

2.24. Example. The theory of posets (partially ordered sets) is the Aposet = {≤}-theory
Tposet := {∀x (x ≤ x),

∀x ∀y ∀z ((x ≤ y) ∧ (y ≤ z) → (x ≤ z)),
∀x ∀y ((x ≤ y) ∧ (y ≤ x) → (x = y))}.

An Aposet-structure M = (M,≤M) is a model of Tposet iff ≤M is a reflexive, transitive, and
antisymmetric binary relation on M .

2.25. Example. The theory of totally or linearly ordered sets is the Aposet-theory
Ttoset := Tposet ∪ {∀x ∀y ((x ≤ y) ∨ (y ≤ x))}.

2.26. Example. The theory of equivalence relations is the Aequiv = {∼}-theory consisting of
the first two axioms of Tposet together with the last axiom (“symmetry”) of Tgraph, with the relation
symbols replaced by ∼.

As these examples show, it is often useful to “modularize” theories into groups of related axioms.

2.27. Example. The theory of monoids is the theory over the signature Amon = {·, 1}, where ·, 1
are binary, nullary function symbols respectively, with the axioms

Tmon := {∀x ∀y ∀z ((x · y) · z = x · (y · z)),
∀x (1 · x = x),
∀x (x · 1 = x)}.

Examples of monoids are (R,+, 0), (R, ·, 1), (XX , ◦, idX), and (P(X),∪,∅) for any set X.
10

2.28. Example. The theory of groups over Agrp = Amon ∪ {−1}, where −1 is a unary function
symbol (usually written after its argument), is

Tgrp := Tmon ∪ {∀x (x · x−1 = 1),∀x (x−1 · x = 1)}.

Examples are (R,+, 0,−), ((0,∞), ·, 1,−1), and the subset of XX consisting of the bijections.
2.29. Remark. In many textbooks and courses, a monoid/group would be defined as a set equipped
with merely an associative binary operation (called a semigroup), obeying the axiom that there
exists an identity element and/or inverses. In other words, we may define the operation of
identity/inverse from the primitive operation of multiplication; see Definition 2.64 below for the
general development of this idea. However, having these additional definable operations as part of
the signature is more convenient, especially in the case of monoids; see e.g., Exercise 2.47(b).
2.30. Example. An abelian group is a group which moreover satisfies the commutativity axiom.
Usually, when discussing a generic abelian group, one uses an additive notation; we thus take
Aabgrp := {+, 0,−}, and Tabgrp to be the above theory Tgrp with ·, 1,−1 replaced with +, 0,−
respectively, plus the axiom

∀x ∀y (x+ y = y + x).
Models include Z, 2Z = {2n | n ∈ Z}, Q, R, R2, Z/2Z, . . . with the usual operations.

(An example of a non-abelian group is the symmetric group SX of all bijections X ≅ X of a set
X with ≥ 3 elements: swapping a ↔ b does not commute with swapping b ↔ c.)
2.31. Example. The theory of rings is the Aring = Afield = {+, 0,−, ·, 1}-theory Tring consisting of
Tabgrp ∪ Tmon together with the distributivity axioms

∀x ∀y ∀z (x · (y + z) = x · y + x · z),
∀x ∀y ∀z ((y + z) · x = y · x+ z · x).

Both distributivity axioms are needed, because · might not be commutative; the theory of
commutative rings is the Aring-theory

Tcommring := Tring ∪ {∀x ∀y (x · y = y · x)}.
Examples of rings include Z,Q,R,C,Z/nZ,Matn×n(R) = {n× n matrices with real entries}; all of
these except the last are commutative.

(Some people don’t require rings to have a multiplicative identity 1, in which case nZ ⊆ Z would
also be a ring. Those who require rings to contain 1 call nZ a rng, as in ring without identity.)

The theory of fields is the Afield-theory
Tfield := Tcommring ∪ {¬(0 = 1),

∀x (¬(x = 0) → ∃y (x · y = 1))}.
Models include Q,R,C,Z/nZ for prime n (only).

The theory of ordered fields is the Aordfield-theory
Tordfield := Tfield ∪ Ttoset ∪ {∀x ∀y ∀z ((x ≤ y) → (x+ z ≤ y + z)),

∀x ∀y ∀z ((x ≤ y) ∧ (0 ≤ z) → (x · z ≤ y · z))}.
Models include Q,R (not C or Z/nZ).
2.32. Exercise. One would perhaps think that · in a ring should be required to distribute over not
just binary +, but also nullary 0 and perhaps “(−1)-ary” negation −.

Show that this is (semantically) implied by distributivity over + along with the other ring
axioms, but would not be implied if we only required addition to form a monoid, not a group. (See
Exercises 2.47 and 3.29. A ring without − is sometimes called a rig, as in ring without negation;
an example is given by (P(X),∪,∅,∩, X).)

11

2.33. Example. The theory of (R-)vector spaces is the uncountable Avec-theory

Tvec := Tabgrp ∪


∀x ((ab) · x = a · (b · x))
∀x (1 · x = x)
∀x ((a+ b) · x = a · x+ b · x)
∀x ∀y (a · (x+ y) = a · x+ a · y)

∣∣∣∣∣∣∣∣∣ a, b ∈ R

.
Note that ∀x quantifies over elements of the structure (i.e., vectors), while to express laws which
hold for each scalar, we need infinite families of axioms, one for each scalar. (Note also the differing
roles of a, b, x in e.g., the third axiom, in which the terms on either side have the tree structures

(a+ b)·

x

+

a·

x

b·

x

In particular, note that + in a+ b does not refer to the symbol + ∈ Avec, but to addition in R.)
2.34. Example. Let G be a monoid. An (left) action of G on a set X is a function · : G×X → X
obeying only the first two axioms above, which are the only ones that make sense:

∀x ((ab) · x = a · (b · x)),
∀x (1 · x = x).

A G-set is a set equipped with an action of G. The theory TGset of (left) G-sets (for a fixed G)
consists of these two axioms, over the signature AGset = {a· | a ∈ G}.

(Thus, a R-vector space, or more generally K-vector space for any field K, is a K-set, where K
refers to the multiplicative monoid, such that the action K ×X → X preserves + on both sides.)
2.35. Example. Suppose we wish to axiomatize structures which are sets M equipped with an
injective sequence f : N → M of distinct elements. Since n ∈ N is not in M , we cannot treat f as a
unary function; rather, for each n ∈ N, we treat f(n) as a single constant symbol. Let

A := {f(0), f(1), f(2), . . . }.
An A-structure M is a set M equipped with f(0)M, f(1)M, . . . ∈ M . Now to impose injectivity, take

T := {¬(f(m) = f(n)) | m ̸= n ∈ N}.
(Note that it is not possible to enforce surjectivity of f via a first-order theory. Intuitively, this is
because we would need to say ∀x ((x = f(0)) ∨ (x = f(1)) ∨ · · ·); see Theorem 4.3.)

Finally, here are some degenerate examples of theories:
2.36. Example. The ∅-theory ∅ axiomatizes the class of all sets (i.e., ∅-structures).
2.37. Example. The ∅-theory T = {∀x ∀y (x = y)} axiomatizes the class of sets of size ≤ 1.
2.38. Exercise. Verify that a finite union of axiomatizable classes of structures is still axiomatizable.
2.39. Exercise. Show that for any finite F ⊆ N, the class of all sets of size ∈ F is axiomatizable.
2.40. Remark. For a theory T with free variables from X, a “model of T ” cannot just be a structure;
we also need to know how the variables are assigned, before each ϕ ∈ T has a definite truth value.
Thus, we take a model of T to mean a pair (M, α) of a structure M together with a variable
assignment α : X → M such that M |=α ϕ, and denote the collection of all such by

ModX(T) := {(M, α) | α : X → M and M |=α T }.
Everything we said above still holds for this extended notion of model (for fixed X).

12

2.C. Homomorphisms and definability. These are an entirely new feature of first-order logic.
Whereas two propositional models m,n : A → {0, 1} can only be equal or not, in first-order logic,
two models M,N may look “the same” for all intents and purposes, without actually being equal:

2.41. Example. There are two possible ways of defining the ring (or just abelian group) Z/nZ:
concretely, as the numbers 0, 1, . . . , n− 1 with arithmetic operations followed by taking remainder;
or abstractly, as congruence classes [0], [1], . . . , [n − 1] mod n. These two are technically not the
same structure (the elements of the former are natural numbers, whereas the elements of the latter
are equivalence classes of integers); rather, they are two “equivalent copies of the same structure”.

2.42. Example. Since R is constructed from Q (e.g., as Dedekind cuts, or equivalence classes of
Cauchy sequences), we technically do not have Q ⊆ R; rather, there is a “copy” of Q inside R.

The big picture is as follows. As before, we have the left “semantic side” of first-order logic,
consisting of models, as well as the right “syntactic side”, consisting of formulas; and these are
related by the Galois connection induced by the satisfaction relation |=.

(2.43)

Mod(Tring) Lform(Aring)
ϕ

ψ
ZQ

R

Z/2Z

The difference is that now, the elements of the left side of the picture (i.e., models) may be compared
and related amongst themselves: for example, the ring Q may be “embedded” inside R, while Z has
Z/2Z as a quotient. These relationships among models, or more precisely, “structure-preserving
maps”, in turn interact with the interpretation of the formulas on the right side in various ways.

2.44. Definition. Let A be a signature, M,N be two A-structures. An A-homomorphism
h : M → N is a function h : M → N between their underlying sets which preserves the structure:

(a) for each n-ary function symbol f ∈ An
fun, we have

h(fM(a1, . . . , an)) = fN (h(a1), . . . , h(an))
for all a1, . . . , an ∈ M (we express this as “h preserves (the interpretation of) f”);

(b) for each n-ary relation symbol R ∈ An
rel, we have the equivalent conditions

(a1, . . . , an) ∈ RM =⇒ (h(a1), . . . , h(an)) ∈ RN ,

RM(a1, . . . , an) ≤ RN (h(a1), . . . , h(an)).
Note the ≤, not =! (We express this as “h preserves (the interpretation of) R”.)

We let
Hom(M,N) :=

{
h ∈ NM

∣∣ h is a homomorphism
}
.

2.45. Example. For two Aabgrp-structures M,N , a homomorphism h : M → N has to obey

h(a+M b) = h(a) +N h(b),(∗)
h(0M) = 0N ,

h(−Ma) = −Nh(a).
Note that these conditions have nothing to do with what axioms M,N satisfy! If M,N happen to
be abelian groups (i.e., models of Tabgrp), then we call h an abelian group homomorphism. For
example, exp : (R,+, 0,−) → (R, ·, 1,−1) is a homomorphism, by the exponent laws: (∗) says

ea+b = ea · eb.
13

2.46. Example. For two vector spaces M,N |= Tvec, a homomorphism h : M → N has to obey the
above, as well as, for each r ∈ R and a ∈ M ,

h(r ·M a) = r ·N h(a).(†)
Of course, homomorphisms of vector spaces are usually called linear transformations.

Linear transformations are usually defined (in a linear algebra class, say) by requiring only the two
conditions (∗) and (†). This is an accident specific to certain kinds of structures, where preservation
of some parts of the structure implies preservation of others; the general notion of homomorphism,
which works for all structures, requires preservation of everything.

2.47. Exercise.
(a) Show that if a function h : M → N between groups preserves ·, then it also preserves 1,−1,

i.e., it is a group homomorphism. [See also Exercise 2.62.]
(b) Thus, if M,N are vector spaces and h preserves +, r·, then h is a linear transformation.
(c) Thus, in a ring (Example 2.31), · distributes over (not only + but also) 0 and −.
(d) Give an example of a non-homomorphism between monoids which nonetheless preserves ·.

2.48. Example. For two posets M,N |= Tposet, a homomorphism h : M → N has to obey
a ≤M b =⇒ h(a) ≤N h(b).

This is usually called an order-preserving or monotone function. For example, exp : R → R is
monotone. For a non-numeric example, for any function f : X → Y between sets, taking preimage
yields a monotone function between their powersets:

f−1 : P(Y) −→ P(X).
This is not only order-preserving:

A ⊆ B ⊆ Y =⇒ f−1(A) ⊆ f−1(B),
but also preserves the set operations ∩,∪, etc.:

f−1(A ∩B) = f−1(A) ∩ f−1(B),
f−1(A ∪B) = f−1(A) ∪ f−1(B),

f−1(∅) = ∅),
f−1(Y) = X.

(In other words, it is an ordered rig homomorphism; see Exercise 2.32.)

2.49. Definition. A homomorphism h : M → N is an A-isomorphism, written h : M ≅ N , if
(i) it is a bijection, i.e., it has an inverse h−1 : N → M , which a priori is just a function;
(ii) h−1 is also a homomorphism N → M.

Two structures M,N are isomorphic, denoted M ≅ N , if there exists an isomorphism h : M ≅ N .
An automorphism of M is an isomorphism from M to itself. Let

Aut(M) := {h ∈ Hom(M,M) | h is an automorphism} ⊆ MM .

2.50. Example. exp : (R,+, 0,−) → (R, ·, 1,−1) is an isomorphism of abelian groups.

2.51. Example. It is a fundamental theorem of linear algebra that every finite-dimensional vector
space (over R) is isomorphic to Rn for some n.

In group theory and linear algebra, isomorphisms are often defined without mentioning condition
2.49(ii). Indeed, 2.49(ii) is automatic whenever the signature A in question is functional, i.e., consists
only of function symbols; see Proposition 2.77. However, 2.49(ii) is needed in general:

14

2.52. Example. For two A-structures M1,M2 on the same underlying set M , the identity function
M → M is a homomorphism M1 → M2 iff the function symbols f ∈ Afun are interpreted the same
way, while for each relation symbol R ∈ Arel, we have RM1 ⊆ RM2 .

Thus for example, idR : (R,=) → (R,≤) is a poset homomorphism, but not an isomorphism,
since for the inverse idR : (R,≤) → (R,=) to be a homomorphism, we would need (≤) ⊆ (=).

A homomorphism by definition preserves function and relation symbols. We now show that they
preserve most other concepts that can be defined from the primitive functions and relations, while
isomorphisms preserve everything.

2.53. Proposition. Let h : M → N be a homomorphism.
(a) For each term t ∈ LXterm(A) and variable assignment α : X → M , we have

h(tM(α)) = tN (h ◦ α).

We express this by saying that “h preserves (the interpretation of) t”.
(b) For each formula ϕ ∈ LXform(A) and variable assignment α : X → M , we have

M |=α ϕ =⇒ N |=h◦α ϕ

or equivalently ϕM(α) ≤ ϕN (h ◦ α),

provided that ϕ is positive-existential, i.e., built using only atomic formulas, ∧,∨,⊤,⊥,
and ∃ (without ¬, hence also without → or ∀).

We express this by saying that “h preserves (the interpretation of) ϕ”.
(c) If h is an isomorphism, then h preserves the interpretations of all formulas. It follows that

(by replacing ϕ with ¬ϕ) the converse of the implication in (b) also holds.

Note that if we think of α ∈ MX as an “X-ary tuple” (α(x))x∈X , then these are the analogues of
the conditions in Definition 2.44 of homomorphism, extended from atomic to arbitrary formulas.

Proof . (a) By induction on t.
• For a variable t = x ∈ X, we have

h(xM(α)) = h(α(x)) by definition of xM (2.7)
= xN (h ◦ α) by definition of xN .

• For t = f(t1, . . . , tn) where f ∈ An
fun and t1, . . . , tn ∈ LXterm(A), we have

h(f(t1, . . . , tn)M(α)) = h(fM(tM1 (α), . . . , tMn (α))) by definition of f(t1, . . . , tn)M

= fN (h(tM1 (α)), . . . , h(tMn (α))) since h is a homomorphism
= fN (tN1 (h ◦ α), . . . , tNn (h ◦ α)) by IH
= f(t1, . . . , tn)N (h ◦ α) by definition of f(t1, . . . , tn)N .

(b) By induction on ϕ. We will state the inductive cases as a series of lemmas, as they are
sometimes also useful on their own. (See the examples after this proof.)

2.54. Lemma. Every homomorphism h : M → N preserves the interpretation of atomic formulas.

Proof . Similar to the inductive case of (a) (Exercise).

2.55. Lemma. Let h : M → N be an arbitrary function (between the underlying sets).
(i) If h preserves ϕ, ψ ∈ LXform(A), then h also preserves ϕ ∧ ψ, ϕ ∨ ψ.
(ii) h always preserves ⊤,⊥.

15

Proof . (i) The key point is that the functions min,max : {0, 1}2 → {0, 1} used to interpret ∧,∨ are
monotone. Thus for any variable assignment α : X → M , we have

(ϕ ∧ ψ)M(α) = min(ϕM(α), ψM(α)) by definition
≤ min(ϕN (h ◦ α), ψN (h ◦ α)) by preservation of ϕ, ψ and monotonicity of min
= (ϕ ∧ ψ)N (h ◦ α) by definition,

and similarly for ∨. (This doesn’t work for ¬, because x 7→ 1 − x is not monotone.)
(ii) ⊤M(α) = 1 ≤ 1 = ⊤N (h ◦ α); similarly for ⊥.

2.56. Lemma. Let h : M → N be an arbitrary function. If h preserves the interpretation of
ϕ ∈ LX∪{x}

form (A), where x is any variable, then h also preserves the interpretation of ∃xϕ ∈ LXform(A).

Proof . Let α : X → M . We have
M |=α ∃xϕ ⇐⇒ ∃a ∈ M s.t. M |=α⟨x 7→a⟩ ϕ,

N |=h◦α ∃xϕ ⇐⇒ ∃b ∈ N s.t. N |=(h◦α)⟨x 7→b⟩ ϕ;(∗)
and we must show that the former implies the latter. Given the former, since h preserves ϕ, we get

N |=h◦α⟨x 7→a⟩ ϕ.

Now h ◦ α⟨x 7→ a⟩ = (h ◦ α)⟨x 7→ h(a)⟩ : X ∪ {x} → N , since both functions map x 7→ h(a) and all
other y ∈ X \ {x} to h(α(y)). Thus the RHS of (∗) holds with b := h(a).

Now the proof of 2.53(b) follows immediately by induction on ϕ.
(c) Since h, h−1 are both homomorphisms, by Lemma 2.54, both preserve atomic formulas. But

2.57. Lemma. If h : M → N is a bijection, then h preserves ϕ ∈ LXform(A) iff h−1 preserves ¬ϕ.

Proof . To show =⇒: N |=α ¬ϕ ⇐⇒ N ̸|=α=h◦h−1◦α ϕ =⇒ M ̸|=h−1◦α ϕ ⇐⇒ M |=h−1◦α ¬ϕ.

Together with the preceding lemmas, we may now show by induction that h, h−1 both preserve
arbitrary formulas. (We only care about h in the end, but need to also show it for h−1 in order for
the inductive case for ¬ to go through.) (Proof of 2.53)

2.58. Example. For a homomorphism h : M → N between vector spaces, for the Avec-term
t := 3 · x+ 4 · (5 · y + (−z)),

Proposition 2.53(a) says that for all a, b, c ∈ M , (omitting superscripts M, N for clarity)
h(3 · a+ 4 · (5 · b+ (−c))) = 3 · h(a) + 4 · (5 · h(b) + (−h(c))).

In other words, we recover the familiar fact that linear transformations preserve linear combinations.

2.59. Example. For a homomorphism h : M → N between commutative rings (see Example 2.31),
we can likewise think of a term t ∈ LXterm(Aring) as a polynomial with integer coefficients, e.g.,

t = x · x+ x · x+ x · x+ (−x) + 1 + 1

would be how we formally write 3x2 −x+2; h then has to preserve evaluation of all such polynomials:
h(3z2 − a+ 2) = h(tM(x 7→ a)) = tN (h ◦ (x 7→ a)) = 3h(a)2 − h(a) + 2.

If we now consider the positive-existential sentence
ϕ := ∃x (t = 0),

then Proposition 2.53(b) says that if the polynomial t has a root in M, then it also has a root in N :
∃a ∈ M s.t. tM(x 7→ a) = 0 ⇐⇒ M |= ϕ =⇒ N |= ϕ ⇐⇒ ∃b ∈ N s.t. tN (x 7→ b) = 0.

16

2.60. Example. Consider the Aring-formula with one free variable x
ϕ := ∃y (x · y = 1).

The interpretation in a commutative ring M under an assignment x 7→ a says that a has a
multiplicative inverse. Thus, commutative ring homomorphisms preserve invertibility.

In a field, we have
x ̸= y ⇐⇒ x+ (−y) ̸= 0

⇐⇒ x+ (−y) is invertible
⇐⇒ ∃z ((x+ (−y)) · z = 1).

Thus, field homomorphisms preserve ̸=, i.e., are injective.

2.61. Example. Consider the formula
x · x = x.

If a function h between groups preserves ·, then it preserves this formula; but this formula is
equivalent in a group to “1 = x”, whence h preserves 1.

2.62. Exercise. Similarly, show that a function between groups preserving · and 1 also preserves −1,
hence is a group homomorphism (reproving Exercise 2.47).

2.63. Exercise. Show in general that h : M → N preserves the interpretation of a term t ∈ LXterm(A)
iff it preserves the interpretation of the formula t = y, where y is an additional variable not in X.

These examples show that if a concept (operation or relation) can be expressed in a positive-
existential way in a given structure, then it is in some sense “implicitly part of the structure”. We
formalize this idea as follows:

2.64. Definition. Let K be a class of structures, and suppose we have an assignment M 7→ RM to
each M ∈ K of some n-ary relation RM ⊆ Mn (not necessarily denoted by any relation symbol in
the signature). We say that the family of these relations RM is definable (in all structures in K) if
there is an A-formula ϕ ∈ L{x1,...,xn}

form (A) such that for every M ∈ K, RM is given by

ϕM
{x1,...,xn} ⊆ M{x1,...,xn} ≅Mn.

In other words,
(a1, . . . , an) ∈ RM ⇐⇒ M |=x1 7→a1,...,xn 7→an

ϕ.

If ϕ is defined by a special type of formula, e.g., positive-existential, then we say it is positive-
existentially definable.

If we instead have an assignment M 7→ fM of an n-ary function fM : Mn → M for each M ∈ K,
then we say these functions are definable if their graphs are definable (as (n+ 1)-ary relations).

2.65. Example. By Example 2.60, ̸= is positive-existentially definable in fields. (It is also definable,
but not positive-existentially definable, in all Afield-structures, by Corollary 2.67, since not every
Afield-homomorphism is injective, e.g., between two rings which are not fields such as Z ↠ Z/2Z.)

2.66. Example. By Example 2.61 and Exercise 2.62, the functions 1 (the constant) and −1 are
positive-existentially definable from {·} in groups.

1 is also definable in monoids: x = 1 ⇐⇒ ∀y ((x · y = y) ∧ (y · x = y)). However, it is not
positive-existentially definable, by Exercise 2.47(b).

2.67. Corollary (of Proposition 2.53 and Exercise 2.63). If a relation is definable in every structure
in K, then it is preserved by every isomorphism between two such structures, and by every
homomorphism if it is positive-existentially definable.

Similarly for definable functions.
17

2.68. Example. In the field R (so K = {R}), we have
0 ≤ x ⇐⇒ ∃y (y · y = x),
x ≤ y ⇐⇒ 0 ≤ y + (−x) ⇐⇒ ∃z (z · z = y + (−x)),

i.e., ≤ is positive-existentially definable. Thus, every field homomorphism R → R is monotone.

2.69. Exercise. Show that ≤ is positive-existentially definable in the monoid N under addition.

2.70. Exercise. Show that ≤ is positive-existentially definable in the field Q.
[Hint: Lagrange’s four-squares theorem says every n ∈ N is a sum of four perfect squares.]

2.71. Example. The constant i ∈ C is not definable from the field structure. That is, its graph,
which is the singleton {i} ⊆ C, is not definable: there is no formula ϕ ∈ L{x}

form(Afield) true only at i.
This is because the complex conjugation map z 7→ z is a field automorphism not fixing i.

This makes precise the oft-quoted idea that the imaginary unit i is “not uniquely defined”, because
−i is also a square root of −1 and there’s no way to tell them apart: if you took every mathematical
document ever written and changed all the i’s to −i’s, everything would remain valid. Of course,
this all depends on the background notions (operations and relations) involving complex numbers
that one is allowed to talk about. If we introduce a constant symbol denoting i, or something
equivalent (like a unary relation “has positive imaginary part”), complex conjugation would no
longer be an automorphism of the resulting structure!

2.72. Example. For any subset N ⊆ M of the underlying set of a structure M, closed under fM

for all f ∈ Afun, we have a substructure N on N defined by restricting the interpretations in M
of all the symbols in A. The inclusion function i : N ↪→ M is always a homomorphism from such a
substructure (with =⇒ strengthened to ⇐⇒ in the preservation of relations in Definition 2.44).

For example, Z ⊆ R is a {0, 1,≤}-substructure (under the usual interpretations). The sentence
ϕ := ∀x ((x ≤ 0) ∨ (1 ≤ x))

is true in Z, but not in R, hence is not preserved by the inclusion i : Z ↪→ R. Thus, by Proposition 2.53,
it cannot be semantically equivalent in every ring to a positive-existential sentence.

2.73. Exercise. Show that inclusion of a substructure preserves all existential formulas, i.e.,
formulas built by starting with a quantifier-free formula, and then applying ∃ some number of times.

2.74. Exercise.
(a) Show that Q[

√
2] := {a+ b

√
2 | a, b ∈ Q} ⊆ R is a subring that is also a field.

(b) Show that a + b
√

2 7→ a − b
√

2 is a well-defined automorphism of this field. [Hint: your
argument must break if Q were replaced with R!]

(c) Conclude that ≤ is not definable from the ring operations in Q[
√

2] (even though Q[
√

2] is
sandwiched between the subfield Q and the superfield R in which ≤ is definable!).

2.75. Exercise. Show that any surjective homomorphism preserves all positive formulas, i.e.,
formulas built using ∧,∨,⊤,⊥, ∃, ∀ (no ¬, except those included in ∀ := ¬∃¬).

2.76. Exercise. Find an example of a surjective homomorphism that fails to preserve ¬.

We end with a more theoretical “meta-application” of definability:

2.77. Proposition. Let A be a functional signature, i.e., consisting entirely of function symbols.
Then every bijective A-homomorphism h : M → N is an isomorphism.

Proof . Let f ∈ An
fun. We need to show that h−1 preserves f . By Exercise 2.63, this is equivalent

to h−1 preserving its graph f(x1, . . . , xn) = y. By Lemma 2.57, this is equivalent to h preserving
¬(f(x1, . . . , xn) = y), which holds true because h preserves f and is injective (so preserves ̸=).

18

2.D. Optional: infinitary logic. Very broadly speaking, the concept of definability introduced
in the preceding subsection is the first-order analogue of axiomatizability in propositional logic:
both ask whether a given semantic concept has a syntactic definition. However, above we discussed
only certain aspects of first-order definability; and these aspects are in some sense completely
orthogonal to the aspects of axiomatizability that we discussed back in propositional logic. Whereas
propositional axiomatizability is all about the limited expressive power of finite formulas (which
hence had to do with “limits of truth assignments”, i.e., approximating on any finite subset), the
syntactic aspects of definability considered above have nothing at all to do with finiteness.

2.78. Example. In a vector space V (over R, say), vectors v⃗1, . . . , v⃗n are linearly dependent iff
∃a1, . . . , an ∈ R, not all zero, s.t. a1v⃗1 + · · · + anv⃗n = 0.

This is not a positive-existential first-order condition in the usual sense: the ∃ is not over the
underlying set of the structure V ; rather, it is really an infinite (indeed uncountable) disjunction∨

0̸⃗=(a1,...,an)∈Rn

(a1v⃗1 + · · · + anv⃗n = 0).

Note that this formula, despite being infinite, is still “positive-existential” in an obvious sense.

Glancing at the proof of Proposition 2.53 should convince you that finiteness of the connectives is
not used in any essential way. Moreover, one can easily think of many other common mathematical
properties which can only be expressed in an infinitary way, to which it would be useful to apply
the formalism of homomorphisms and isomorphisms from the preceding subsection (see below). The
following exercises should give you a taste of such infinitary extensions of first-order logic:

2.79. Exercise (advanced). Infinitary first-order logic (sometimes called L∞∞
3) is defined as

follows. An infinitary signature A is a set of function and relation symbols, where the arity of
each symbol is an arbitrary set X;4 as in first-order logic, we write AX

fun,AX
rel to denote the X-ary

function and relation symbols. The infinitary A-terms are constructed inductively as follows:
• Every variable x is an A-term.
• If f ∈ AX

fun is an X-ary function symbol, and for each x ∈ X, we have an A-term τ(x) (so τ
is a function from X to the collection of A-terms), then f(τ) is an A-term.

The infinitary A-formulas are constructed as follows:
• If R ∈ AX

rel is an X-ary relation symbol, or the symbol = when X = {0, 1}, and for each
x ∈ X, we have an A-term τ(x), then R(τ) is an atomic A-formula.

• If (ϕi)i∈I is an arbitrary family of A-formulas indexed over some set I, then
∧
i∈I ϕi,

∨
i∈I ϕi

are A-formulas. When I = {0, 1}, we abbreviate
∧
i∈I ϕi as ϕ0 ∧ ϕ1; when I = ∅, we

abbreviate as ⊤. Similarly for ∨,⊥.
• If ϕ is an A-formula, then so is ¬ϕ.
• If ϕ is an A-formula, and X is an arbitrary set of variables, then ∃X ϕ is an A-formula.

The free variables of an infinitary term/formula are defined the usual way; the only subtle case is
FV(∃X ϕ) := FV(ϕ) \X.

Let as usual LXterm(A),LXform(A) denote the terms/formulas with free variables from X.
(a) Define the notion of A-structure. [For instance, you should be able to turn R into an

A = {L}-structure, where L is an N-ary relation symbol whose interpretation says that a
given sequence α : N → R has a limit.]

3The first ∞ refers to the allowed arity of the
∧

,
∨

’s; the second ∞ refers to the allowed arity of the ∃’s.
4If you prefer, you can assume that the arity is always an ordinal or even a cardinal, if you know what those are.

19

(b) Define the interpretation of A-terms and A-formulas in an A-structure M. [The ∃ case
should be: for ∃X ϕ ∈ LYform(A),

M |=α ∃X ϕ :⇐⇒ ∃β : X → M s.t. M |=α⟨β⟩ ϕ,

where α⟨β⟩ is something you have to define.]
(c) Check that Proposition 2.53 goes through for infinitary formulas.
(d) Write down an infinitary positive-existential formula ϕ with free variables x, y1, . . . , yn, in

the finitary signature Avec, whose interpretation in a vector space says that x is a linear
combination of y1, . . . , yn.

(e) Write down an infinitary positive-existential Avec-formula with free variables x1, . . . , xn
which says that x1, . . . , xn are linearly dependent.

(f) Write down an infinitary Avec-sentence which says that a vector space has dimension n. Can
the sentence be positive-existential?

(g) Write down an infinitary Aposet-sentence which says that every bounded increasing sequence
has a least upper bound.

(h) An ordered field is Archimedean if every element in it is ≤
n︷ ︸︸ ︷

1 + · · · + 1 for some n ∈ N.
Write down an infinitary Aordfield-sentence which expresses this.

(i) A (simple undirected) graph is a forest, also called acyclic, if there are no loops (of length
≥ 3). Write down an infinitary Agraph-sentence which expresses this.

(j) Write down an infinitary ∅-sentence axiomatizing the finite sets.
(k) Find a suitable signature A and infinitary A-sentence axiomatizing metric spaces.

2.80. Exercise (advanced).
(a) Show that every rational in R is definable (as a constant) from the field structure.
(b) Show that every element of R is definable in infinitary logic.

[Hint: recall that ≤ is definable from the field structure, by Example 2.68.]
(c) Conclude that the only field automorphism h : R ≅ R is the identity function.
(d) Show that every subset A ⊆ R is infinitary definable from the field structure.
(e) Show that every n-ary relation S ⊆ Rn is infinitary definable from the field structure.

One benefit of infinitary logic is that we get exact converses to Corollary 2.67:
2.81. Exercise (advanced). Let A be a (possibly infinitary) signature, M be an A-structure.

(a) For any set X, give an infinitary formula ϕ ∈ LXform(∅) such that for any α : X → M ,
M |=α ϕ ⇐⇒ α : X → M is a bijection.

(b) Give an infinitary formula ϕ ∈ LMform(A) such that for any α : M → M ,
M |=α ϕ ⇐⇒ α : M → M is an automorphism.

(c) For any a⃗ = (a1, . . . , an) ∈ Mn, give an infinitary formula defining
{g(⃗a) | g ∈ Aut(M)} ⊆ Mn.

[Hint: the formula should begin with ∃M , where here M is treated as a set of variables.]
(d) Conclude that if R ⊆ Mn is preserved by every automorphism of M, then R is definable by

an infinitary formula.
(e) Prove that similarly, if R ⊆ Mn is preserved by every homomorphism M → M, then R is

definable by an infinitary positive-existential formula.
2.82. Remark. It is a much deeper question, beyond the scope of this course, to ask precisely
which relations R ⊆ Mn are definable by formulas of bounded size, e.g., by finitary formulas, or by
infinitary formulas which can use infinite

∧
,
∨

but only finite ∃.
20

2.E. Application: affine geometry of the plane. We now give an extended example of using
the machinery of definability and homomorphisms to prove a nontrivial theorem in “normal” math.

We are interested in the geometry of the plane, R2. There are many concepts commonly thought
of as “geometric”, e.g., lines, circles, distances, angles, areas, etc. In 1872, Klein proposed the
Erlangen program, an organizing framework that clarifies what “geometry” might mean:

• There is not a single “geometry”, but rather multiple different “geometries”, depending on
which basic notions one is allowed to talk about.

• Each geometry is characterized by its allowed “symmetries”. For example, the symmetries
of Euclidean geometry include rotation, reflection, and translation.

• The meaningful notions in a particular geometry should be precisely those which are preserved
by all the symmetries. For example, the symmetries of Euclidean geometry preserve lines
and angles, but do not preserve, say, the notion of vertical line (which can be rotated), which
is therefore not a meaningful notion in Euclidean geometry.

Of course, 1872 was before the advent of mathematical logic. In modern terminology, the various
possible planar “geometries” are given by different structures (first-order or otherwise) one can put
on the underlying set R2; while the “symmetries” of each “geometry” are the automorphisms of
that structure. The last bullet point above is then an instance of the general fact that the notions
definable in a structure are those preserved by all automorphisms (see Exercise 2.81).

2.83. Definition. Affine geometry is the geometry one gets by regarding lines as the only primitive
notion. This is a more primitive geometry than Euclidean geometry: for example, scaling by a
constant factor is an affine automorphism, which shows that “distance” is not an affine notion.

We can encode “lines” into a first-order structure by talking about collinearity of three points.
Define the ternary relation on R2

Coll(A,B,C) :⇐⇒ A,B,C are collinear.
Note that here, each of A,B,C is an ordered pair of real numbers. Note also that we do not
necessarily require A,B,C to be distinct; if two of the points (or even all three) are equal, then
they are trivially collinear. Note, finally, that we do not say anything about the order in which
A,B,C appear on a line; for example, the following triples (A,B,C) both satisfy Coll:

A B C

C A B

The following more quantitative notion allows us to talk about not just the ordering of points on
a line, but even the precise position where a point appears on a line through two other points.

2.84. Definition. An affine combination of two points A = (xA, yA) and B = (xB, yB) is a point
which can be written as a weighted (coordinatewise) average of them:

C = (1 − t)A+ tB, for some t ∈ R.

In other words, an affine combination is just a linear combination where the coefficients sum to 1.
For example, as t varies from 0 to 1, we move “at constant speed” from A to B.

A = 1A+ 0B B = 0A+ 1B
2A−B

1
2A+ 1

2B

Note that we also allow t outside the interval [0, 1], in which case we get points on the line AB but
not the line segment; e.g., when t = −1, we get 2A−B, which can be written more intelligibly as
A+ (A−B) (start at A, then shift by the vector from B to A). Note, finally, that we again do not
require A ̸= B; if A = B, then all affine combinations of them are the same.

21

In order to express affine combinations in first-order logic, we define the binary operation
ACt : (R2)2 −→ R2

(A,B) 7−→ (1 − t)A+ tB

for each t ∈ R. Thus we get an uncountable signature Aaff , consisting of the binary function symbols
ACt for each t (similarly to Avec from Example 1.7), together with a natural Aaff-structure on R2.

2.85. Exercise. More generally, an affine combination of any finite number of points A1, . . . , An ∈
R2 is a point of the form

a1A1 + · · · + anAn for some a1, . . . , an ∈ R adding to 1.

For example, when n = 3 and a1 = a2 = a3 = 1
3 , we get the centroid or barycenter of a triangle:

A

B

C

1
3A+ 1

3B + 1
3C

Show that for each n and a1, . . . , an adding to 1, the n-ary operation
ACa1,...,an : (R2)n −→ R2

(A1, . . . , An) 7−→ a1A1 + · · · + anAn

is definable from the Aaff-structure on R2. [Hint: when n ≥ 2, not all the ai can be 1.]

2.86. Exercise. Show that for any three points A,B,C ∈ R2, the following are equivalent:
(a) every point can be written as an affine combination of A,B,C in at least one way;
(b) every point can be written as an affine combination of A,B,C in at most one way;
(c) A,B,C are not collinear, i.e., none of them is an affine combination of the other two.

If these hold, we say A,B,C are an affine basis for R2.

We now have two reasonable candidates for how to formalize “affine geometry” as a first-
order structure on R2: via either a single ternary relation {Coll}, or all of the binary operations
Aaff = {ACt}t∈R. It is intuitively clear that the latter is richer than merely the former: if we can
say “C appears on the line AB at position t”, for each t, then we can say that C appears at some
position along the line. Formally, this “some” would be an infinite disjunction over all t ∈ R. We
also have to be slightly careful about the degenerate case where A = B; as noted above, in this case
their only affine combination will be the same point A = B, even though any C will be trivially
collinear with A,B,C (we can take the line AC instead). In summary, the infinitary formula

(A = B) ∨
∨
t∈R

(ACt(A,B) = C) ∈ L{A,B,C}
form (Aaff)(2.87)

shows that the ternary relation Coll is positive-existentially definable from the Aaff-structure on R2.
We have the corresponding notions of homomorphisms for both structures:

2.88. Definition. A {Coll}-homomorphism T : R2 → R2 is called a collineation.
An Aaff-homomorphism T : R2 → R2 is called an affine transformation.

2.89. Corollary (of Corollary 2.67/Exercise 2.79). Every affine transformation T : R2 → R2 is a
collineation.

Proof . By the positive-existential definition (2.87).
22

2.90. Exercise. Using the affine basis (0, 0), (1, 0), (0, 1) for R2, show that affine transformations of
the plane are precisely all functions of the following form, for arbitrary a, b, c, d, p, q ∈ R:

T : R2 −→ R2[
x
y

]
7−→

[
ax+ by + p
cx+ dy + q

]
=

[
a b
c d

] [
x
y

]
+

[
p
q

]
.

2.91. Exercise.
(a) Give an example of a collineation T : R2 → R2 which is not affine.
(b) Conclude that affine combinations are not positive-existentially definable from the collinearity

relation (even using infinitary logic).
(c) (for set theorists) Show that there are strictly more collineations than affine transformations.

By an invertible affine transformation, respectively, invertible collineation, we mean an
automorphism of R2 equipped with the respective structure. Note that since Aaff consists only
of function symbols, an invertible affine transformation is the same thing as a bijective one (by
Proposition 2.77). The same happens to be true for collineations, even though Coll is a relation:
2.92. Exercise.

(a) Show that A,B,C ∈ R2 are not collinear iff they are distinct, and every point in R2 lies on
a line through two distinct points each of which lies on one of the lines AB,BC,CA.

(b) Conclude that the inverse of every bijective collineation is a collineation.
Now comes the surprise:

2.93. Theorem. Every invertible collineation T : R2 → R2 is affine.
In other words, keeping in mind the correspondence between automorphisms and (infinitary)

definability (Exercise 2.81), this says that the purely qualitative notion of collinearity (the relation
Coll) can in fact be used to define positions along a line (the operations ACt)! Indeed, we will prove
this theorem by giving such an explicit definition of ACt from Coll. This will be done via a series of
lemmas, each showing that progressively more “quantitative” notions can be defined from Coll.
2.94. Lemma. The quaternary relation

Para(A,B,C,D) :⇐⇒ A ̸= B and C ̸= D and the lines AB and CD are parallel
can be defined from Coll.
Proof . Two lines in the plane are parallel iff they don’t intersect, or they are the same line; thus
Para is defined by the {Coll}-formula
¬(A = B) ∧ ¬(C = D) ∧ (¬∃E (Coll(A,B,E) ∧ Coll(C,D,E)) ∨ (Coll(A,B,C) ∧ Coll(A,B,D))).
2.95. Lemma. The quaternary relation

Pgram(A,B,C,D) :⇐⇒ ABCD is a non-collinear parallelogram
can be defined from Coll and Para, hence from just Coll.

A B

D C

Proof . We basically just need to say that opposite sides are parallel; for non-collinearity, it is enough
to say that A,B,C are not collinear (which will in particular force all four vertices to be distinct, in
agreement with the first two clauses in the definition of Para above):

¬Coll(A,B,C) ∧ Para(A,B,C,D) ∧ Para(A,D,B,C).
23

At this stage, we have already extracted a fair amount of quantitative information from the Coll
relation. Indeed, note that parallelograms essentially allow us to express vector addition:

A A+ V⃗

A+ W⃗

V⃗

W⃗ V⃗ + W⃗

Informally speaking, all that is still needed in order to express arbitrary affine combinations is scalar
multiplication of vectors. Scaling by an integer amount can be expressed via repeated addition;
scaling by a rational a/b can then be expressed by saying that scaling one vector by a is equal to
scaling another by b. Of course, there is the technical annoyance that we need to add parallel vectors
here, while above we restricted to non-collinear parallelograms. This is easily worked around:

2.96. Lemma. The binary operation

AC2 : (R2)2 −→ R2

(A,B) 7−→ −A+ 2B = B + (B −A)

can be defined from Pgram, hence from Coll.

Proof . Recall that to say that the operation AC2 is definable means that its ternary graph relation
“C = B + (B −A)” is definable. Indeed, we have

C = B + (B −A) ⇐⇒ ((A = B) ∧ (B = C)) ∨ ∃D ∃E (Pgram(A,B,E,D) ∧ Pgram(B,C,E,D)).

When A ̸= B, the existential expresses the following situation:

A
B

D E = D + (B −A)

C = B + (E −D) = B + (B −A)

2.97. Lemma. For any rational t ∈ Q, the operation ACt : (R2)2 → R2 is definable from Coll.

Proof . First, consider the case t = n ∈ N. We use induction on n. For n = 0 or 1, we have

AC0(A,B) = A, AC1(A,B) = B.

For n ≥ 2, by considering the picture

A B AC2(A, B) · · · ACn−2(A, B) ACn−1(A, B) ACn(A, B)

we are led to the calculation

ACn(A,B) = (1 − n)A+ nB

= (2 − n)A+ (n− 1)B + ((2 − n)A+ (n− 1)B − (3 − n)A− (n− 2)B)
= AC2(ACn−2(A,B),ACn−1(A,B));

since AC2 is definable from Coll by the preceding lemma, while ACn−1,ACn−2 are definable by the
IH, we get that ACn is definable from Coll. This proves the case t = n ∈ N.

For negative t ∈ Z, we have

ACt(A,B) = (1 − t)A+ tB = AC1−t(B,A);

since t < 0, 1 − t ≥ 0, so this reduces to the previous case. So we have proved all integer cases t ∈ Z.
24

Finally, for a rational t = p
q where p, q ∈ Z, we have

ACt(A,B) = C ⇐⇒ (1 − p
q)A+ p

qB = C

⇐⇒ p(B −A) = q(C −A)
⇐⇒ (1 − p)A+ pB = (1 − q)A+ qC

⇐⇒ ACp(A,B) = ACq(A,C);
since ACp,ACq are definable from Coll by the previous cases, so is ACt.

In order to complete the proof, we just need to extend from rational t to arbitrary real t ∈ R.
This turns out to be much harder than any of the preceding lemmas. Intuitively, the idea is to
“approximate” ACt for an arbitrary real t by ACr for rational r ≈ t, and then take a limit as r → t.
We thus need to define “limit” from Coll. We can formulate this as follows:

2.98. Lemma. The ternary relation
Seg(A,B,C) :⇐⇒ C is on the line segment AB

⇐⇒ C = ACt(A,B) for some t ∈ [0, 1]
is definable from Coll. [Such affine combinations with t ∈ [0, 1] are called convex combinations.]

Once we know this lemma, we can approximate t ∈ R by rationals r < t < s on either side of it,
and then demand that ACt(A,B) be between ACr(A,B) and ACs(A,B) for all such approximations;
by taking r, s to be closer and closer to t, a “squeezing” argument then shows that ACt(A,B) must
be what it should be. Assuming Lemma 2.98 for now, we can thus complete the

Proof of Theorem 2.93. We claim that for any t ∈ R,

(∗) ACt(A,B) = C ⇐⇒
∧
r,s∈Q
r<t<s

Seg(ACr(A,B),ACs(A,B), C).

This is enough, since ACr,ACs are definable (in first-order logic) from Coll by Lemma 2.97, and
Seg is definable by Lemma 2.98, whence ACt is definable (in infinitary logic) from Coll.

To see (∗): if ACt(A,B) = C, then for all r < t < s, we have
C = (1 − t)A+ tB

= A+ t(B −A)
= A+ (r + t−r

s−r (s− r))(B −A)
= A+ ((1 − t−r

s−r)r + t−r
s−rs)(B −A)

= (1 − t−r
s−r)(A+ r(B −A)) + t−r

s−r (A+ s(B −A))
= (1 − t−r

s−r)((1 − r)A+ rB) + t−r
s−r ((1 − s)A+ sB)

= AC t−r
s−r

(ACr(A,B),ACs(A,B))

where t−r
s−r ∈ [0, 1] because r < t < s, whence C is a convex combination of ACr(A,B),ACs(A,B).

Conversely, suppose that for all r, s ∈ Q with r < t < s, C is between ACr(A,B),ACs(A,B). Since
ACs(A,B) − ACr(A,B) = ((1 − s)A+ sB) − ((1 − r)A+ rB)

= (s− r)(B −A),
the distance between ACr(A,B),ACs(A,B) is s− r times the distance between A,B. Since C is
between ACr(A,B),ACs(A,B), as is ACt(A,B) (as shown above), the distance between C,ACt(A,B)
is thus at most s − r times the distance between A,B. Since we may choose r, s so that s − r is
arbitrarily small, the distance between C,ACt(A,B) must thus be zero.

25

So it remains to prove Lemma 2.98. We can make one more easy reduction:

2.99. Lemma. The ternary relation
Ray(A,B,C) :⇐⇒ C = ACt(A,B) for some t ∈ [0,∞)

is definable from Coll.

Proof of Lemma 2.98. Seg(A,B,C) ⇐⇒ Ray(A,B,C) ∧ Ray(B,A,C).

Proof of Lemma 2.99. If A = B, then C = ACt(A,B) again just means A = B = C. So we may
restrict attention to the case A ̸= B. Consider the following picture:

A B

D

E

F

C

Here D is any point not on the line AB, while E is any point on the line AB, so that
E = (1 − t)A+ tB

for some t ∈ R. The unique line through E parallel to BD intersects the line AD at a unique point
F , since BD is not parallel to AD (since A,B,D are not collinear). We must have

F = (1 − t)A+ tD,

in order to ensure that the vector F − E = t(D −B) is parallel to the line BD. Now similarly to
before, the unique line through F parallel to DE intersects the line AB at a unique point C, since
DE is not parallel to AB (since they intersect at E); and for the same reason as for F ,

C = (1 − t)A+ tE

= (1 − t)A+ t((1 − t)A+ tB)
= (1 − t2)A+ t2B.

The key thing to note is that the coefficient t2 must be ≥ 0. In other words, what we have shown
is that, starting from any point E on the line AB, and then constructing F and C uniquely as
above, we end up with a point C on the ray AB; and this point C may be an arbitrary point
C = (1 − s)A + sB on the ray AB, for any s ≥ 0, since we may choose E above with t :=

√
s.

Putting everything together, we may define Ray from Coll and Para as follows:

Ray(A,B,C) ⇐⇒ (A = C) ∨

¬(A = B) ∧ ∃D ∃E ∃F

¬Coll(A,B,D) ∧ Coll(A,B,E) ∧
Para(B,D,E, F) ∧ Coll(A,D,F) ∧
Para(D,E, F,C) ∧ Coll(A,C,B)


.

2.100. Exercise. Draw the above picture starting with E on the other side of A, to see that C still
ends up on the right side of A.

26

3. First-order proofs

3.A. Natural deduction. We now define a natural deduction system for first-order logic. As in
propositional logic, we will design the system so as to capture the informal proofs that mathematicians
write in practice. Here is an example of an informal first-order proof:

3.1. Example. In every abelian group, for every x, y, there is a z such that x+ z = y
(Tabgrp⊢∀x∀y∃z(x+z=y))

.

Proof . Let x, y be arbitrary; we must find z such that x+ z = y
(Tabgrp⊢{x,y}∃z(x+z=y))

.
We have

x+ ((−x) + y) = (x+ (−x)) + y by associativity
= 0 + y by inverse law
= y by identity law.

(Tabgrp⊢{x,y}x+((−x)+y)=y)

Thus z := (−x) + y works.
So indeed, for every x, y, there is a z such that x+ z = y.

Compared to propositional proofs, we see that, at each intermediate stage of the above proof, not
only have we made some background assumptions (which in the above proof are always just the
abelian group axioms, Tabgrp), but we may also have fixed some free variables (x, y above).

3.2. Definition. A first-order A-sequent is an expression of the form
T ⊢X ϕ,

read “T proves ϕ under X”, where T is an A-theory and ϕ is an A-formula, both with free variables
from X. Informally, X consists of some variables which have been “fixed” in the background, and
T consists of the background assumptions which have been made so far.

In Example 3.1, we have labeled the sequents in three of the subproofs. We have not yet labeled
any of the inference rules used to go between these sequents, because they all concern the new
features of first-order formulas: quantifiers ∀, ∃ and equality =. (See Definition 3.5 below.)

Before introducing these rules, we need to address an annoying techniality. As in the above proof,
we often need to substitute terms for variables in a first-order formula (e.g., z 7→ (−x) + y into
x+ z = y). This can cause clashes with bound variables:

3.3. Example. Consider the Aordfield-formula
ϕ := (x ≤ y) ∧ ∃y (x+ y = z).

Informally speaking, the two occurrences of y don’t refer to the same thing: the second occurrence
is bound by the ∃y, hence is “inaccessible from the outside”. If we attempt to substitute x 7→ y into
this formula, we get the “wrong” answer

ϕ[x 7→ y] = (y ≤ y) ∧ ∃y (y + y = z).
Indeed, note for instance that while ϕ is true in Z under any assignment to x, z, the new formula is
no longer true under z 7→ 1! The “correct” substitution is to first change the bound variable in ϕ:

ϕ′ := (x ≤ y) ∧ ∃w (x+ w = z).
We may now safely substitute x 7→ y, yielding

ϕ′[x 7→ y] = (y ≤ y) ∧ ∃w (y + w = z).
Two formulas which differ only in bound variables such as ϕ, ϕ′ above are called α-equivalent,
denoted ≡α; and it is a basic fact that we may always replace a formula by an α-equivalent copy
to make a substitution safe. The proof of this fact, as well as the formal definition of ≡α, is quite
painful, and not really conceptually important at this point. We thus relegate it to the Appendix.

27

3.4. Convention. Henceforth, all formulas in sequents may be replaced with α-equivalent copies. In
other words, sequents really consist of α-equivalence classes of formulas; however, we will continue
to denote them as single formulas, as in {ϕ, ψ} ⊢X θ, rather than {[ϕ], [ψ]} ⊢X [θ].

3.5. Definition. The natural deduction system for first-order logic, over the set of first-order
sequents, has the following inference rule(schema)s:

• We include all the same rules as in propositional logic; this may be formalized via the
following trick. For an alphabet B and propositional inference rule

T1 ⊢ ϕ1 · · · Tn ⊢ ϕn
T ⊢ ϕ

over B-formulas, we include every first-order instance of it, obtained by performing the
same formula substitution σ : B → LXform(A) into all the formulas in it, resulting in

T1[σ] ⊢X ϕ1[σ] · · · Tn[σ] ⊢X ϕn[σ]
T [σ] ⊢X ϕ[σ] .

3.6. Example.
T ⊢X ϕ

(∨I1)
T ⊢X ϕ ∨ ψ

for T ⊆ LXform(A), ϕ, ψ ∈ LXform(A)

is a first-order instance of the propositional (∨I1) rule. This is not completely obvious
from the definition: after all, the formulas ϕ, ψ, as well as the formulas in T , may contain
quantifiers. To see this in a systematic manner, for each θ ∈ T , let Rθ be an atomic
propositional formula; then the above (∨I1) is a first-order instance of the propositional rule

{Rθ | θ ∈ T } ⊢ P
(∨I1)

{Rθ | θ ∈ T } ⊢ P ∨Q

via the substitution σ : {Rθ | θ ∈ T } ∪ {P,Q} → LXform(A) mapping Rθ 7→ θ, P 7→ ϕ, Q 7→ ψ.

• For =, we have the following rules:
(=I)

T ⊢X t = t
for t ∈ LXterm(A),

T ⊢X s = t T ⊢X ϕ[x 7→ s]
(=E)

T ⊢X ϕ[x 7→ t]
for s, t ∈ LXterm(A), ϕ ∈ LX∪{x}

form (A)
such that ϕ[x 7→ s], ϕ[x 7→ t] are safe substitutions.

The (=I) rule says that everything equals itself, while the (=E) rule (sometimes called the
Leibniz rule) says that things which are equal are interchangeable in every statement. We
call ϕ here the template formula in which the two equal things can be swapped.

• Finally, for ∃, we have the following rules:
T ⊢X ϕ[x 7→ t]

(∃I)
T ⊢X ∃xϕ

for ϕ ∈ LX∪{x}
form (A), t ∈ LXterm(A)

such that ϕ[x 7→ t] is safe,
T ⊢X ∃xϕ T ∪ {ϕ} ⊢X∪{x} ψ

(∃E)
T ⊢X ψ

for ϕ ∈ LX∪{x}
form (A), ψ ∈ LXform(A)

such that x ̸∈ X.

The (∃I) rule says “to prove ∃xϕ, produce a witness t”, while the (∃E) rule says “to use
∃xϕ to prove ψ, fix x such that ϕ, and prove ψ”; the restriction x ̸∈ X says that x is a
newly fixed variable, about which the only thing we know is ϕ (since FV(T) ⊆ X).

The definitions of derivable and admissible inference rule are the same as in propositional logic:
the former means there is a deduction of the given rule using only the basic rules above, while
the latter means that deductions of the hypotheses of the given rule from no hypotheses may be
transformed into a deduction of the conclusion from no hypotheses.

28

3.7. Exercise. Every first-order instance of every provable sequent in propositional logic is provable.
[“Substitute σ into the deduction D, yielding D[σ].”]

For example, recall that for any propositional formula ϕ, it and its double negation ¬¬ϕ provably
imply each other (see Example 3.12 from propositional logic). Here was one of the deductions:

(A)
{ϕ,¬ϕ} ⊢ ϕ

(A)
{ϕ,¬ϕ} ⊢ ¬ϕ

(¬E)
{ϕ,¬ϕ} ⊢ ⊥

(¬I)
ϕ ⊢ ¬¬ϕ

We claim that the same holds for any first-order ϕ ∈ LXform(A) (over the variables X). Again, this is
perhaps not as obvious as it looks; we need to first take ϕ above to be an atomic formula P , and
then perform the substitution P 7→ ϕ for the desired first-order ϕ, in order to arrive at the deduction

(A)
{ϕ,¬ϕ} ⊢X ϕ

(A)
{ϕ,¬ϕ} ⊢X ¬ϕ

(¬E)
{ϕ,¬ϕ} ⊢X ⊥

(¬I)
ϕ ⊢X ¬¬ϕ

3.8. Exercise. Similarly, every first-order instance of a derivable propositional rule is derivable.
For example, the following rules are derivable:

T ∪ {¬ϕ} ⊢X ϕ
(P)

T ⊢X ϕ
(LEM)

T ⊢X ϕ ∨ ¬ϕ
T ∪ {ϕ} ⊢X ψ

(→I)
T ⊢X ϕ → ψ

On the other hand, it is not true that every first-order instance of an admissible propositional
rule is automatically admissible! Think about what this would mean: we would need to know that
if all the hypotheses of the instance are provable, then so is the conclusion. If we knew that the
proofs of the hypotheses of the instance were instances of proofs of the hypotheses of the original
rule, then by admissibility of the original rule, its conclusion is provable, hence the conclusion of the
instance rule is also provable. But a moment’s thought reveals this to be an unreasonable “if”:

3.9. Example. The propositional rule
⊢ P

⊢ ⊥
is vacuously admissible: there is no proof of ⊢ P (by soundness, since P is not true under every
truth assignment m). But the substitution P 7→ ⊤ takes this to the instance

⊢ ⊤
⊢ ⊥

which is no longer admissible, since there is a proof of ⊢ ⊤ (by (⊤I), which is not an instance of any
proof of ⊢ P), but there is still no proof of ⊢ ⊥ (by soundness).

3.10. Example. The propositional rule
{P,Q ∧R} ⊢ R {P,Q ∧R} ⊢ S

(∧I)
{P,Q ∧R} ⊢ R ∧ S

has the first-order instance
(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} x · y = 0 (0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} y · z = 1

(∧I)
(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} (x · y = 0) ∧ (y · z = 1)

via the substitution σ : {P,Q,R, S} → L{x,y,z}
form (Aordfield) mapping Q 7→ 0 ≤ 1, R 7→ x · y = 0 (which

are the only possibilities for σ(Q), σ(R), since Q ∧R needs to be mapped to a conjunction on the
LHS), S 7→ y ·z = 1 (by considering the RHS of the second hypothesis), and P 7→ (0 ≤ 1)∧ (x ·y = 0)
(since P also needs to be mapped to some formula in the LHS theory).

29

On the other hand, the first-order rule
(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} 0 ≤ 1 (0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} y · z = 1

(∧I)
(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} (0 ≤ 1) ∧ (y · z = 1)

would not be a first-order instance of the above propositional rule, since R would need to be mapped
to both 0 ≤ 1 and x · y = 0 (and these are not the same, even up to α-equivalence). Nonetheless,
this rule is a first-order instance of a valid propositional (∧I), just not the one above; we just need
to choose the propositional formulas in a more general fashion, e.g., by systematically assigning a
different propositional symbol P,Q,R, . . . to each first-order formula, as explained in Definition 3.5:

P ⊢ Q P ⊢ R
(∧I)

P ⊢ Q ∧R

which becomes the above rule under P 7→ (0 ≤ 1) ∧ (x · y = 0), Q 7→ 0 ≤ 1, and R 7→ y · z = 1.
Finally, neither of

(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y} 0 ≤ 1 (0 ≤ 1) ∧ (x · y = 0) ⊢{x,y} y · z = 1
(∧I)

(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y} (0 ≤ 1) ∧ (y · z = 1) ,

(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y} 0 ≤ 1 (0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} y · z = 1
(∧I)

(0 ≤ 1) ∧ (x · y = 0) ⊢{x,y,z} (0 ≤ 1) ∧ (y · z = 1)
is a valid first-order instance of any propositional rule. In the first rule, the second hypothesis as
well as conclusion are not valid first-order sequents, since the fixed variable set {x, y} does not
include all the free variables appearing in the formulas on either side. The second rule does not
have this problem; however, all the variable sets appearing in a first-order instance must be the
same (and all the substitutions must be obtained via the same substitution σ).

We now turn to examples of the new first-order rules. The (=I) rule is self-explanatory. Here is
an example of (=E); pay close attention to the role of the template formula:

3.11. Example. Here is part of the proof that 0 ≤ 1 from the ordered field axioms (Example 2.31):
...

Tordfield ⊢ 1 · 1 = 1

...
Tordfield ⊢ 0 ≤ 1 · 1

(=E)
Tordfield ⊢ 0 ≤ 1

The template formula here is ϕ := (0 ≤ x), and we are plugging x 7→ 1 · 1 and x 7→ 1 into it.
(The rest of the proof will have to wait until we have the (∀E) rule, so that we can make use of

the ∀ axioms in Tordfield; see Exercise 3.30.)

3.12. Example. Here is another (more artificial) application of (=E):
(A)

{x = −y, x ≤ x} ⊢{x,y} x = −y
(A)

{x = −y, x ≤ x} ⊢{x,y} x ≤ x
(=E)

{x = −y, x ≤ x} ⊢{x,y} −y ≤ −y
Here, the template formula could be ϕ := (x ≤ x), in which case we are substituting x 7→ x and
x 7→ −y into it; but it is probably clearer to choose the template formula ϕ := (z ≤ z) instead, to
emphasize that z is the “hole” in which we are replacing the equal terms x = −y. If we wanted to
replace only one of the x’s, we have no choice but to use a different variable in the template:

(A)
{x = −y, x ≤ x} ⊢{x,y} x = −y

(A)
{x = −y, x ≤ x} ⊢{x,y} x ≤ x

(=E)
{x = −y, x ≤ x} ⊢{x,y} −y ≤ x

Here, the template formula is ϕ := (z ≤ x), with the substitutions z 7→ x and z 7→ −y.
30

It is common to use (=E) indirectly, via one of the following familiar ways of reasoning about
equality which are derived from (=E):
3.13. Example. The following symmetry rule for =

T ⊢X s = t
(Sym)

T ⊢X t = s

is derivable:
T ⊢X s = t

(=I)
T ⊢X s = s

(=E)
T ⊢X t = s

(Here we are applying (=E) to the template formula x = s with substitutions x 7→ s, t.)
3.14. Exercise. The following transitivity rule for = is derivable:

T ⊢X r = s T ⊢X s = t
(Trans)

T ⊢X r = t

More generally, for each n ∈ N, the following rule is derivable:
T ⊢X t0 = t1 T ⊢X t1 = t2 · · · T ⊢X tn−1 = tn(Transn)

T ⊢X t0 = tn

3.15. Example. The following congruence rule for = is derivable:
T ⊢X s1 = t1 · · · T ⊢X sn = tn(Cong)
T ⊢X f(s1, . . . , sn) = f(t1, . . . , tn) for f ∈ An

fun.

To prove this, we repeatedly apply (=E) (you should read this top-down):

T ⊢X sn = tn

T ⊢X s2 = t2

T ⊢X s1 = t1
(=I)

T ⊢X f(s1, . . . , sn) = f(s1, . . . , sn)
(=E)

T ⊢X f(s1, . . . , sn) = f(t1, s2, . . . , sn)
(=E)

T ⊢X f(s1, . . . , sn) = f(t1, t2, s3, . . . , sn)
...

(=E)
T ⊢X f(s1, . . . , sn) = f(t1, . . . , tn)

3.16. Exercise. To which template ϕ and substitutions x 7→ s, t are we applying each (=E)?
3.17. Example. We can now formalize part of the informal proof from Example 3.1:

D1

D2 =
...

Tabgrp ⊢{x,y} x+ (−x) = 0
(=I)

Tabgrp ⊢{x,y} y = y
(Cong)

Tabgrp ⊢{x,y} (x+ (−x)) + y = 0 + y
D3

(Trans3)
Tabgrp ⊢{x,y} x+ ((−x) + y) = y

(∃I)
Tabgrp ⊢{x,y} ∃z (x+ z = y)

The (∃I) at the end is applied with the witness term t. To fill in the rest of the proof, we need the
rules (∀I) and (∀E); see Example 3.27 below.
3.18. Remark. It is often helpful to think of ∃ as analogous to ∨: ϕ1 ∨ ϕ2 means ϕi is true for some
i = 1, 2, whereas ∃xϕ means ϕ is true for some x in the underlying set (which may be infinite).

The (∃I) rule is then analogous to (∨I1) and (∨I2) (“to prove ∃xϕ, prove ϕ for some x”, namely
the witness term t, versus “to prove ϕ1 ∨ ϕ2, prove ϕi for some i”).

Similarly, the (∃E) rule is analogous to (∨E) (“to use ∃xϕ to prove ψ, prove ψ assuming ϕ for
an arbitrary x” versus “to use ϕ1 ∨ ϕ2 to prove ψ, prove ψ assuming ϕi for each i = 1, 2”). This is
illustrated by the following example:

31

3.19. Example. In order to prove that in a field, an element with a reciprocal cannot be zero:

(A)
Tfield ∪ {∃y (x · y = 1)} ⊢x ∃y (x · y = 1)

...
Tfield ∪ {∃y (x · y = 1), x · y = 1, x = 0} ⊢{x,y} ⊥

(¬I)
Tfield ∪ {∃y (x · y = 1), x · y = 1} ⊢{x,y} ¬(x = 0)

(∃E)
Tfield ∪ {∃y (x · y = 1)} ⊢x ¬(x = 0)

Note how this application of (∃E) satisfies the condition y ̸∈ {x} from Definition 3.5, guaranteeing
that y is a newly fixed variable about which nothing else is known.

3.20. Exercise. Finish the proof. [Use Exercise 3.29.]

3.21. Example. Here is an invalid application of (∃E), showing what could go wrong when we
forget to check the condition that the variable is new:

(A)
∃x (x = 1) ⊢x ∃x (x = 1)

(A)
{∃x (x = 1), x = 1} ⊢x x = 1

(∃E)
∃x (x = 1) ⊢x x = 1

Indeed, the conclusion says that under the assumption ∃x (x = 1) (true in any structure with a
constant 1), we should have x = 1 for an arbitrary x (clearly not true in general).

The correct way to apply (∃E) in this deduction is to first change ∃x (x = 1) to α-equivalent
formula using a new bound variable:

(A)
{∃x (x = 1)} ⊢x ∃x (x = 1) ≡α ∃y (y = 1)

???
{∃x (x = 1), y = 1} ⊢{x,y} x = 1

(∃E)
{∃x (x = 1)} ⊢x x = 1

We can no longer complete the proof, as expected.

3.22. Example. Let us show that for any ϕ, ψ ∈ LX∪{x}
form (A), we have the provable equivalence

⊢X (∃x (ϕ ∨ ψ)) ↔ (∃xϕ) ∨ (∃xψ).
After applying (∧I) and (→I) as usual, this amounts to proving

{∃x (ϕ ∨ ψ)} ⊢X (∃xϕ) ∨ (∃xψ), {(∃xϕ) ∨ (∃xψ)} ⊢X ∃x (ϕ ∨ ψ).
To prove the first sequent, we would naturally want to

“Fix x such that ϕ ∨ ψ holds, and then split into the cases where ϕ or ψ holds, in
each case proving the respective clause on the RHS.”

The only snag is that x could already have been fixed, i.e., maybe x ∈ X. To circumvent this, pick
some y ̸∈ X which is also not bound in any of the above formulas, so that (ϕ ∨ ψ)[x 7→ y] is a
safe substitution (see Appendix) and so ∃x (ϕ ∨ ψ) ∼α ∃y (ϕ ∨ ψ)[x 7→ y]. We can then proceed to
formalize the above proof sketch:

(A)
∃x (ϕ ∨ ψ) ⊢X

∃x (ϕ∨ψ)≡α︷ ︸︸ ︷
∃y (ϕ ∨ ψ)[x 7→ y]

(A)
T ⊢X∪{y} (ϕ ∨ ψ)[x 7→ y]

(A)
T ∪ {ϕ[x 7→ y]} ⊢X∪{y} ϕ[x 7→ y]

(∃I)
T ∪ {ϕ[x 7→ y]} ⊢X∪{y} ∃xϕ

(∨I1)
T ∪ {ϕ[x 7→ y]} ⊢X∪{y} (∃xϕ) ∨ (∃xψ)

...
(∨E)

T := {∃x (ϕ ∨ ψ), (ϕ ∨ ψ)[x 7→ y]} ⊢X∪{y} (∃xϕ) ∨ (∃xψ)
(∃E)

∃x (ϕ ∨ ψ) ⊢X (∃xϕ) ∨ (∃xψ)
where the last missing sub-deduction on the right is similar to the one to its left, and where in
applying (∃I) we’re using that ϕ[x 7→ y] is safe since (ϕ ∨ ψ)[x 7→ y] is.

3.23. Exercise. Give the deduction of the converse {(∃xϕ) ∨ (∃xψ)} ⊢X ∃x (ϕ ∨ ψ).
32

In order to give more interesting examples of first-order deductions, we now need

3.24. Proposition (weakening). The following rule is admissible, for T ⊆ T ′ ⊆ LXform(A):
T ⊢X ϕ

(W)
T ′ ⊢X ϕ

(Note that for now, the variable set has to remain the same; see also Corollary 3.33 below.)

Proof . By induction on the deduction of T ⊢X ϕ, similarly to the propositional case (see Proposi-
tion 3.17 from propositional logic); the point is that in all of the new first-order inference rules in
Definition 3.5, we may also freely introduce extra assumptions into the theory.

3.25. Example. It follows that every first-order instance of an admissible propositional rule which
was derived using weakening is now admissible. This is because we may perform the formula
substitution into the deduction of the propositional rule, as in Exercise 3.8 for derivable rules, and
then replace all the resulting first-order instances of propositional (W) using the first-order (W)
above. For example, we get that the following first-order rules are admissible:

T ⊢X ϕ → ψ T ⊢X ϕ
(→E)

T ⊢X ψ

T ⊢X ϕ T ∪ {ϕ} ⊢X ψ
(Cut)

T ⊢X ψ

3.26. Example. Recalling that ∀x is an abbreviation for ¬∃x¬, we have the admissible rules for ∀
(“to prove ∀xϕ, let x be arbitrary and prove ϕ”, and “from ∀xϕ, deduce ϕ for a particular x”):

T ⊢X∪{x} ϕ
(∀I)

T ⊢X ∀xϕ
for ϕ ∈ LX∪{x}

form (A)
such that x ̸∈ X,

T ⊢X ∀xϕ
(∀E)

T ⊢X ϕ[x 7→ t]
for ϕ ∈ LX∪{x}

form (A), t ∈ LXterm(A)
such that ϕ[x 7→ t] is safe.

Note the similarity to the rules for ∃ but with intro and elim swapped. As in Remark 3.18, it is
helpful to think of these rules as analogous to those for ∧: ∀ is like a conjunction indexed by the
underlying set. Often more helpful, however, is a different analogy: ∀ is analogous to → (“if . . . ,
then . . . ”, versus “if we have some x, then . . . ”). This latter analogy is especially evident in the
inference rules: both sets of rules are derived/admissible; the (→I) and (∀I) rules are clear parallels
(“assume . . . ”, versus “assume x is arbitrary”); and we can also view (→E) and (∀E) as parallels
(“prove . . . , and deduce . . . ”, versus “produce an x, and deduce . . . for it”).

The (∀I) rule is derivable using (W), hence admissible:

(A)
T ∪ {∃x¬ϕ} ⊢X ∃x¬ϕ

T ⊢X∪{x} ϕ
(W)

T ′ ⊢X∪{x} ϕ
(A)

T ′ ⊢X∪{x} ¬ϕ
(¬E)

T ′ := T ∪ {∃x¬ϕ,¬ϕ} ⊢X∪{x} ⊥
(∃E)

T ∪ {∃x¬ϕ} ⊢X ⊥
(¬I)

T ⊢X ¬∃x¬ϕ
Note that the condition on x in (∀I) implies the required condition in the application of (∃E).

The (∀E) rule is also derivable using (W), hence admissible:
(A)

T ∪ {¬ϕ[x 7→ t]} ⊢X ¬ϕ[x 7→ t]
(∃I)

T ∪ {¬ϕ[x 7→ t]} ⊢X ∃x¬ϕ
T ⊢X ¬∃x¬ϕ

(W)
T ∪ {¬ϕ[x 7→ t]} ⊢X ¬∃x¬ϕ

(¬E)
T ∪ {¬ϕ[x 7→ t]} ⊢X ⊥

(C)
T ⊢X ϕ[x 7→ t]

Again, the conditions in (∀E) imply the required conditions in (∃I).
33

3.27. Example. To finish Example 3.17 (formalizing Example 3.1):
...

Tabgrp ⊢{x,y} ∃z (x+ z = y)
(∀I)

Tabgrp ⊢{x} ∀y ∃z (x+ z = y)
(∀I)

Tabgrp ⊢∅ ∀x ∀y ∃z (x+ z = y) , D2 =
(A)

Tabgrp ⊢{x,y} ∀x (x+ (−x) = 0)
(∀E)

Tabgrp ⊢{x,y} x+ (−x) = 0 .

3.28. Exercise. Fill in D1,D3 in Example 3.17.

3.29. Exercise. Give deductions of

Tcommring ⊢x x · 0 = 0, Tcommring ⊢ ∀x ∀y (x · −y = −(x · y)).

[Formalize Exercise 2.32.] Using this, give a deduction of

Tcommring ⊢ ∀x (−(−x) = x).

[Informal proof: −(−x) = 0 + (−(−x)) = x+ (−x) + (−(−x)) = x+ 0 = x.]

3.30. Exercise. Formalize the following statement into a sequent, and give a deduction of it:
“In an ordered field, the square of every element is ≥ 0.”

[Informal proof: since ≤ is a total order, every x is either ≤ 0 or ≥ 0. If x ≥ 0, then since
multiplication by nonnegative elements is order-preserving (by one of the ordered field axioms), we
get x · x ≥ 0 · x = 0. If x ≤ 0, then adding −x to both sides yields 0 ≤ −x, whence by the previous
case, 0 ≤ (−x)2 = x2.]

Using this (and the identity axiom for ·), finish Example 3.11.

3.B. Rules for variables. We now discuss some additional admissible rules relating to free variables.
Like most such discussions (see Appendix on variable substitution), the details are a bit tedious.

3.31. Proposition (substitution). The following rule is admissible, for any variable substitution
σ : X → LYterm(A) such that the substitutions T [σ], ϕ[σ] are safe:

T ⊢X ϕ
(S)

T [σ] ⊢Y ϕ[σ]

3.32. Example. From Example 3.17, we have Tabgrp ⊢{x,y} ∃z (x+ z = y). By (S) with x 7→ y, we
get Tabgrp ⊢{y} ∃z (y + z = y). (Note that since Tabgrp consists of sentences, Tabgrp[σ] = Tabgrp.)

On the other hand, if we had admissibility of (S) with x 7→ z (which is not safe for substitution
into ∃z (x + z = y)), we would get Tabgrp ⊢{y} ∃z (z + z = y), which would violate soundness
(Proposition 3.37) since the abelian group Z with the variable assignment y 7→ 1 fails to satisfy this
formula.

As a special case of (S), we can take X ⊆ Y , and take σ to be the identity function X → X ⊆ Y ,
substitution of which is always safe, yielding

3.33. Corollary (variable weakening). The following rule is admissible, for X ⊆ Y ⊆ V:
T ⊢X ϕ

(S)
T ⊢Y ϕ

Intuitively, this says that if we can prove ϕ after fixing some variables, the same proof should still
apply after fixing some more extraneous variables. This is analogous to the “ordinary” weakening
rule (W) (Proposition 3.24), which says that we can add some extraneous assumptions.

Conversely, we have:
34

3.34. Proposition (syntactic compactness). If T ⊢X ϕ, then there are finite T ′ ⊆ T and X ′ ⊆ X
such that (X ′ contains all free variables occurring in T ′, ϕ, and) T ′ ⊢X′ ϕ.

Proof . First, we prove that keeping X fixed, we may shrink T down to a finite T ′ ⊆ T . This is
exactly the same as in propositional logic (Proposition 3.26 in notes), by induction on the deduction
of T ⊢X ϕ, using that each step of the proof only uses at most one formula in T .

It thus suffices to assume that T is already finite to begin with, and prove that we may shrink X
down to a finite X ′ ⊆ X containing all the free variables in T . We proceed by induction on the
deduction of T ⊢X ϕ.

• If the deduction ends with (A), then X ′ := FV(T) ∪ FV(ϕ) works.
• If the deduction ends with, say,

T ⊢X ϕ ∨ ψ T ∪ {ϕ} ⊢X θ T ∪ {ψ} ⊢X θ
(∨E)

T ⊢X θ
,

then by the IH, there are finite X1, X2, X3 ⊆ X such that
T ⊢X1 ϕ ∨ ψ, T ∪ {ϕ} ⊢X2 θ, T ∪ {ψ} ⊢X3 θ.

Let X ′ := X1 ∪ X2 ∪ X3. Then by variable weakening, we may replace X1, X2, X3 above
with X ′, whence by (∨E), T ⊢X′ θ.

• The rest of the first-order instances of propositional inference rules are similarly handled.
• If the deduction ends with (=I)

T ⊢X t = t
, then X ′ := FV(T) ∪ FV(t) works.

• If the deduction ends with
T ⊢X s = t T ⊢X ϕ[x 7→ s]

(=E)
T ⊢X ϕ[x 7→ t]

where s, t ∈ LXterm(A) with ϕ[x 7→ s], ϕ[x 7→ t] safe, then similarly to the (∨E) case above,
we may find a finite X ′ ⊆ X such that

T ⊢X′ s = t, T ⊢X′ ϕ[x 7→ s];

in particular, for the first sequent to make sense, we must have s, t ∈ LX′
term(A), so that we

may apply (=E) to get T ⊢X′ ϕ[x 7→ t].
• The (∃I) case is similar (except that we should explicitly include all free variables in the

witness term into X ′, to make sure we are still allowed to apply (∃I)).
• Finally, if the deduction ends with

T ⊢X ∃xϕ T ∪ {ϕ} ⊢X∪{x} ψ
(∃E)

T ⊢X ψ

with x ̸∈ X, then by the IH, there are finite X1 ⊆ X and X2 ⊆ X ∪ {y} such that
T ⊢X1 ∃xϕ, T ∪ {ϕ} ⊢X2 ψ.

Let X ′ := X1 ∪ (X2 ∩ X) (cf. the proof of syntactic compactness, Proposition 3.21, from
propositional logic). Then X2 ⊆ X ′ ∪{y} (because X2 ⊆ X ∪{x}), so by variable weakening,

T ⊢X′ ∃xϕ, T ∪ {ϕ} ⊢X′∪{x} ψ.

Moreover, x ̸∈ X ′ since x ̸∈ X ⊇ X ′, so we may apply (∃E) to deduce T ⊢X′ ψ.

In the rest of this subsection, we give the proof of Proposition 3.31. This proof is rather technical,
but the basic idea is straightforward enough: we should be able to simply perform the variable
substitution σ throughout the entire deduction D of T ⊢X ϕ. This is analogous to how one performs
a formula substitution into a propositional deduction, as in Exercise 3.7.

35

The added difficulties are because, when substituting into a first-order sequent, one expects to
encounter issues with variable capture:

• Even though in Proposition 3.31, we assumed that the substitution of σ into the conclusion
T ⊢X ϕ of D is safe, this does not ensure that the substitution into every formula in D is
safe, since D could contain complicated intermediate formulas that don’t appear anywhere
in its conclusion (for example, in the hypotheses of (∨E) or (∃E)).

• A more serious issue is that even if the substitution of σ into every formula in D is safe, we
could still end up with an invalid deduction, because the resulting deduction may violate the
condition x ̸∈ X in (∃E). Indeed, this can happen even in the special case where σ is the
identity, i.e., we are performing variable weakening. For example, in trying to weaken

...
· · · ⊢{x} ∃y (x · y = 1)

...
· · · ∪ {x · y = 1} ⊢{x,y} ¬(x = 0)

(∃E)
· · · ⊢{x} ¬(x = 0)

to the bigger set of variables {x, y} ⊇ {x}, we obtain the invalid
...

· · · ⊢{x,y} ∃y (x · y = 1)

...
· · · ∪ {x · y = 1} ⊢{x,y} ¬(x = 0)

(∃E)
· · · ⊢{x,y} ¬(x = 0) .

To handle this second type of issue, we say that the substitution of σ : X → LYterm(A) into D is
safe if in no application of (∃E) in D is the added variable x in Y .

3.35. Lemma. If T ⊢X ϕ via a deduction into which substitution of σ : X → LYterm(A) is safe, then
T [σ] ⊢Y ϕ[σ].

Proof . By induction on the deduction D of T ⊢X ϕ.
• The first-order instances of propositional rules are all straightforward: just substitute σ

safely into all formulas in sight, possibly after replacing them with α-equivalent copies.
• If D = (=I)

T ⊢X t = t
, then T [σ] ⊢Y (t = t)[σ] = (t[σ] = t[σ]) again by (=I).

• Suppose D ends with
T ⊢X s = t T ⊢X ϕ[x 7→ s]

(=E)
T ⊢X ϕ[x 7→ t]

where both substitutions are safe. After substituting σ into everything in sight, we get
T [σ] ⊢Y s[σ] = t[σ] T [σ] ⊢Y ϕ[x 7→ s][σ]

(=E)
T [σ] ⊢Y ϕ[x 7→ t][σ] .(∗)

In order for this to be a valid application of (=E), we need for ϕ[x 7→ s][σ] and ϕ[x 7→ t][σ]
to be substitutions of s[σ], t[σ] into some common template formula. Because of the way a
safe double substitution behaves (Exercise 3.4 from the Appendix on substitution),

ϕ[x 7→ s][σ] = ϕ[(x 7→ s)[σ]] = ϕ[σ⟨x 7→ s[σ]⟩] = ϕ[σ⟨x 7→ y⟩][y 7→ s[σ]]
where y is a new variable not in Y , hence not in any term in the image of σ, in order to
ensure σ⟨x 7→ y⟩[y 7→ s[σ]] = σ⟨x 7→ s[σ]⟩. Moreover, this last substitution is also safe,
provided we first replace ϕ with an α-equivalent formula none of whose bound variables
appear free in Y (hence in s[σ]). Similarly,

ϕ[x 7→ t][σ] = ϕ[(x 7→ t)[σ]] = ϕ[σ⟨x 7→ t[σ]⟩] = ϕ[σ⟨x 7→ y⟩][y 7→ t[σ]].
Thus (∗) is indeed a valid application of (=E), to the template formula ϕ[σ⟨x 7→ y⟩].

36

• Suppose D ends with
T ⊢X ϕ[x 7→ t]

(∃I)
T ⊢X ∃xϕ

where ϕ[x 7→ t] is safe. After substituting σ into everything in sight, we get
T ⊢Y ϕ[x 7→ t][σ]

(∃I)
T [σ] ⊢Y ∃xϕ[σ⟨x 7→ x⟩](†)

Similarly to the (=E) case above, we have

ϕ[x 7→ t][σ] = ϕ[(x 7→ t)[σ]] = ϕ[σ⟨x 7→ t[σ]⟩] = ϕ[σ⟨x 7→ y⟩][y 7→ t[σ]]

where y is chosen as above. Now in order for (†) to be a valid application of (∃I), we note
that the formula in its conclusion is

∃xϕ[σ⟨x 7→ x⟩] ∼α ∃y ϕ[σ⟨x 7→ x⟩][x 7→ y] = ∃y ϕ[σ⟨x 7→ y⟩],

using that the substitutions σ⟨x 7→ x⟩[x 7→ y] and σ⟨x 7→ y⟩ agree on all free variables in
ϕ: they clearly agree on x; while for z ∈ FV(ϕ) \ {x}, we have σ(z)[x 7→ y] = σ(z) since
x ̸∈ FV(σ(z)) by the original assumption (in the statement of (S)) that (∃xϕ)[σ] is safe.

• Finally, suppose D ends with
T ⊢X ∃xϕ T ∪ {ϕ} ⊢X∪{x} ψ

(∃E)
T ⊢X ψ

where x ̸∈ X. This means σ⟨x 7→ x⟩ is simply σ extended by the identity function (without
erasing any previous σ(x)). Thus, substituting σ into everything yields

T [σ] ⊢Y ∃xϕ[σ] T [σ] ∪ {ϕ[σ]} ⊢Y ∪{x} ψ[σ]
(∃E)

T [σ] ⊢Y ψ[σ]
which is still a valid application of (∃E) since x ̸∈ Y by our assumption that substitution of
σ into D is safe.

In order to finish proving Proposition 3.31, it thus remains to show that any deduction of T ⊢X ϕ
can be turned into one into which substitution of σ is safe. The idea here is to think of the rule

...
T ⊢X ∃xϕ

...
T ∪ {ϕ} ⊢X∪{x} ψ

(∃E)
T ⊢X ψ

as “binding” the free variable x in the second sub-deduction, much as a quantifier ∃xϕ binds the
free x in the subformula ϕ. When a substitution into this rule breaks the condition x ̸∈ X, we
should think of the (∃E) as “capturing” the free variable x. The solution to variable capture is
the familiar one: we need to replace the original deduction with an “α-equivalent” copy, where the
free variable has been replaced with a new variable via a safe substitution. Since this is essentially
similar to the arguments for α-equivalence of formulas in the Appendix, the details are left to you:

3.36. Exercise.
(a) Prove by induction that if T ⊢X ϕ, then for any infinite set Y disjoint from X, there is a

deduction of T ⊢X ϕ whose new variables introduced by applications of (∃E) all come from
Y . [Imitate the proof of Proposition 4.11 from the Appendix.]

(b) Conclude that for any σ : X → LYterm(A), if T ⊢X ϕ, then there is a deduction of it into
which substitution of σ is safe. Thereby conclude Proposition 3.31.

37

3.C. Soundness and completeness. Recalling Remark 2.40, for a theory T and formula ϕ both
with free variables from X, we of course call ϕ a semantic consequence of T if

T |=X ϕ :⇐⇒ (M, α) ∈ ModX(T) ⇐⇒ ∀M, ∀α : X → M, M |=α ϕ.

3.37. Proposition (soundness). If T ⊢X ϕ, then T |=X ϕ.

Proof . We assume that there is a deduction D of T ⊢X ϕ, and we must show that for every
A-structure M and α : X → M such that M |=α T , we have M |=α ϕ. We use induction on D.

• If D ends with (A), then ϕ ∈ T , so since M |=α T , we have M |=α ϕ.
• If D ends with a first-order instance of a propositional inference rule, then the same reasoning

as in the proof of soundness for propositional logic (Proposition 3.27 in the notes) applies.
• If D ends with

(=I)
T ⊢X t = t

,

we have M |=α t = t ⇐⇒ tM(α) = tM(α) which is clearly true.
• If D ends with

T ⊢X s = t T ⊢X ϕ[x 7→ s]
(=E)

T ⊢X ϕ[x 7→ t]

where s, t ∈ LXterm(A) and ϕ ∈ LX∪{x}
form (A) with ϕ[x 7→ s], ϕ[x 7→ t] safe, by the IH, we know

M |=α s = t ⇐⇒ sM(α) = tM(α),
M |=α ϕ[x 7→ s] ⇐⇒ M |=α⟨x 7→sM(α)⟩ ϕ by Proposition 3.3 from Appendix

⇐⇒ M |=α⟨x 7→tM(α)⟩ ϕ by above
⇐⇒ M |=α ϕ[x 7→ t] by Proposition 3.3 again

(where we are using, in the second line for instance, that (x 7→ s)M(α) = α⟨x 7→ sM(α)⟩).
• If D ends with

T ⊢X ϕ[x 7→ t]
(∃I)

T ⊢X ∃xϕ
with ϕ[x 7→ t] safe, then by the IH, we have M |=α ϕ[x 7→ t], which (by Proposition 3.3 again)
means M |=α⟨x7→tM(α)⟩ ϕ; thus there is a ∈ M such that M |=α⟨x 7→a⟩ ϕ, i.e., M |=α ∃xϕ.

• Finally, suppose D ends with
T ⊢X ∃xϕ T ∪ {ϕ} ⊢X∪{x} ψ

(∃E)
T ⊢X ψ

with x ̸∈ X. By the first IH, we know

M |=α ∃xϕ ⇐⇒ ∃a ∈ M s.t. M |=α⟨x7→a⟩ ϕ.

Since also M |=α T by assumption, and so M |=α⟨x 7→a⟩ T (by Exercise 2.11) since T only
has free variables from X ̸∋ x, by the second IH, we get

M |=α⟨x 7→a⟩ ψ.

Since ψ also only has free variables from X ̸∋ x, by Exercise 2.11 again, this means

M |=α ψ,

as desired.

38

3.38. Theorem (completeness). If T |=X ϕ, then T ⊢X ϕ.

Our proof strategy will be an extension of what we did in propositional logic (Theorem 3.28 in
the notes). Suppose T ⊬X ϕ. We will show that T ̸|=X ϕ, i.e., we will construct an A-structure M
together with a variable assignment α : X → M such that M |=α T but M ̸|=α ϕ.

As in propositional logic, we would like to define M to be “precisely what T demands”. To start,
we need to specify the underlying set M . Clearly, each term t ∈ LXterm(A) will need to have an
interpretation tM ∈ M . Thus, as a first approximation, we might take the underlying set to be
simply the set of terms LXterm(A), where we think of a term t ∈ LXterm(A) as its own interpretation.
However, the theory T requires some terms to have the same interpretation: for example,

Tabgrp ⊢{x,y} x+ y = y + x

(by a simple application of (∀E)), and so any model M |= Tabgrp will have to interpret x+ y, y + x
as the same element, by soundness. We therefore take

M := LXterm(A)/≡T ,

where ≡T is the T -provable equality relation between terms defined by
s ≡T t :⇐⇒ T ⊢X s = t.

In other words, M consists of elements which have to exist in any A-structure with a variable
assignment α : X → M , which are equal precisely when T says they have to be.

3.39. Lemma. ≡T is an equivalence relation on LXterm(A).

Proof . By the (=I), (Sym), and (Trans) rules (Example 3.13 and Exercise 3.14).

3.40. Lemma. Let s1, . . . , sn, t1, . . . , tn ∈ LXterm(A) be terms. If s1 ≡T t1, . . . , sn ≡T tn, then:
(a) For each function symbol f ∈ An

fun, we have f(s1, . . . , sn) ≡T f(t1, . . . , tn); thus

fM : Mn = (LXterm(A)/≡T)n −→ LXterm(A)/≡T = M

([t1], . . . , [tn]) 7−→ [f(t1, . . . , tn)].
is a well-defined function.

(b) For each R ∈ An
rel, we have T ⊢X R(s1, . . . , sn) ⇐⇒ T ⊢X R(t1, . . . , tn); thus

RM : Mn = (LXterm(A)/≡T)n −→ {0, 1}

([t1], . . . , [tn]) 7−→

{
1 if T ⊢X R(t1, . . . , tn),
0 otherwise

is well-defined.

Proof . (a) is by the (Cong) rule. The proof of (b) is similar to the derivation of (Cong) in
Example 3.15: if T ⊢X R(s1, . . . , sn), we get T ⊢X R(t1, . . . , tn) by repeatedly applying (=E) with
the deductions of T ⊢X s1 = t1, . . . , coming from s1 ≡T t1,

We have now defined an A-structure M, which we equip with the variable assignment
α : X −→ M = LXterm(A)/≡T

x 7−→ [x].

3.41. Lemma. For any t ∈ LXterm(A), the interpretation of t in M is itself”:

tM(α) = [t].

Proof . By a straightforward induction on t.
39

We now have the following analog of Lemma 3.32 from propositional logic, which says that truth
in this M is exactly what T proves. Whereas that proof needed two conditions on T to make the
inductive cases for ∨,⊥ work, here we need an additional condition for ∃: we define T ⊆ LXform(A) to

• be consistent if T ⊬X ⊥, or equivalently by (⊥E), T ⊬ ϕ for at least one ϕ ∈ LXform(A);
• be complete if for all ϕ ∈ LXform(A), either T ⊢X ϕ or T ⊢X ¬ϕ, or equivalently (as in

Lemma 3.31 from propositional logic), whenever T ⊢X ϕ ∨ ψ, then T ⊢X ϕ or T ⊢X ψ;
• have the Henkin witness property if for all ϕ ∈ LX∪{x}

form (A), whenever T ⊢X ∃xϕ, then
there is t ∈ LXterm(A) and ϕ′ ≡α ϕ such that ϕ′[x 7→ t] is safe and T ⊢X ϕ′[x 7→ t].

Note that conversely, if T ⊢X ϕ′[x 7→ t], then T ⊢X ∃xϕ′ ≡α ∃xϕ by (∃I). Thus, the witness
property can be seen as saying that T obeys a “converse” of (∃I).

3.42. Example. We have Tordfield ⊢ ∃x (x+ x = 1), but there is no Lordfield-term denoting 1/2, so
Tordfield does not have the witness property.

3.43. Lemma. Let T ⊆ LXform(A), and let M, α be defined as in Lemma 3.40. Then T is consistent
and complete and has the witness property iff for all ϕ ∈ LXform(A), we have

M |=α ϕ ⇐⇒ T ⊢X ϕ.(∗)

Proof . (⇐=) Since M ̸|=α ⊥, T ⊬X ⊥. For any ϕ ∈ LXform(A), either M |=α ϕ or M |=α ¬ϕ; thus
either T ⊢X ϕ or T ⊢X ¬ϕ. If T ⊢X ∃xϕ, then by soundness, we know that

M |=α ∃xϕ ⇐⇒ ∃t ∈ LXterm(A) s.t. M |=α⟨x 7→[t]⟩ ϕ

⇐⇒ ∃t ∈ LXterm(A) s.t. M |=(x7→t)M(α) ϕ

⇐⇒ ∃t ∈ LXterm(A), ϕ′ ≡α ϕ s.t. ϕ′[x 7→ t] is safe and M |=(x7→t)M(α) ϕ
′

⇐⇒ ∃t ∈ LXterm(A), ϕ′ ≡α ϕ s.t. ϕ′[x 7→ t] is safe and M |=α ϕ
′[x 7→ t]

⇐⇒ ∃t ∈ LXterm(A), ϕ′ ≡α ϕ s.t. ϕ′[x 7→ t] is safe and T ⊢X ϕ′[x 7→ t] by (∗)
(using Corollary 4.12 and Propositions 3.3 and 4.9 from the Appendix), giving the witness property.

(=⇒) This is mostly by induction on ϕ, except that in the ∃xϕ case, we will need to use the IH
not just for ϕ but for a substitution ϕ[x 7→ t]. Thus, we really need to induct on the height of ϕ.

• For atomic ϕ = R(t1, . . . , tn) where R ∈ An
rel,

M |=α R(t1, . . . , tn) ⇐⇒ RM(tM1 (α), . . . , tMn (α)) = 1
⇐⇒ RM([t1], . . . , [tn]) = 1 by Lemma 3.41
⇐⇒ T ⊢X R(t1, . . . , tn) by definition (3.40) of RM.

• For atomic ϕ = (s = t),
M |=α s = t ⇐⇒ [s] = sM(α) = tM(α) = [t] by Lemma 3.41

⇐⇒ s ≡T t ⇐⇒ T ⊢X s = t by definition of quotient.
• The connective cases are the same as in the proof for propositional logic (Lemma 3.32).
• Finally, suppose (∗) holds for all formulas of height less than that of ∃xϕ, where ϕ ∈

LX∪{x}
form (A); in particular, it holds for all safe ϕ′[x 7→ t] where t ∈ LXterm(A) and ϕ′ ≡α ϕ.

Then as in the proof of (⇐=) above, we have
M |=α ∃xϕ ⇐⇒ ∃t ∈ LXterm(A), ϕ′ ≡α ϕ s.t. ϕ′[x 7→ t] is safe and M |=α ϕ

′[x 7→ t]
⇐⇒ ∃t ∈ LXterm(A), ϕ′ ≡α ϕ s.t. ϕ′[x 7→ t] is safe and T ⊢X ϕ′[x 7→ t] by IH
⇐⇒ T ⊢X ∃xϕ by (∃I) and the witness property for T .

40

Now if T is a complete theory with the witness property such that T ⊬X ϕ (hence T is consistent),
then by Lemma 3.43, we have M |=α T but M ̸|=α ϕ, whence T ̸|=X ϕ. So to finish the proof of
the completeness theorem, we need to modify an arbitrary theory T to give it these properties.

• As in propositional logic, completeness will be achieved by repeatedly adding axioms to T
until it becomes complete.

• In order to achieve the witness property, whenever T ⊢X ∃xϕ, we will add a new variable
to X, which will serve as a witness for ∃xϕ. There will now be new formulas involving the
new variable, so we will need to repeat this step (as well as the previous step) in order to fix
the conditions for the new formulas.

This procedure is formalized as follows.

3.44. Lemma. Let T ⊬X ϕ. Then there is a theory T ′ ⊇ T with free variables from some X ′ ⊇ X,
which is complete and has the witness property (for formulas over X ′), such that T ′ ⊬X′ ϕ.

Proof of completeness theorem given Lemma 3.44. Suppose T ⊬X ϕ. Then by Lemma 3.44, there is
T ′ ⊇ T with free variables from X ′ ⊇ X, which is complete and has the witness property, such that
T ′ ⊬X′ ϕ, whence T ′ is also consistent. By Lemma 3.43, the A-structure M defined above obeys

M |=α ψ ⇐⇒ T ′ ⊢X′ ψ

for all ψ ∈ LX′
form(A). In particular, for all ψ ∈ T ⊆ T ′, we have T ′ ⊢X′ ψ (by (A)) so M |=α ψ and

so M |=α|X ψ since FV(ψ) ⊆ X (using Exercise 2.11), i.e., M |=α|X T ; and since T ′ ⊬X′ ϕ, we have
M ̸|=α ϕ, so again since FV(ϕ) ⊆ X, M ̸|=α|X ϕ. So M, α|X witnesses that T ̸|=X ϕ.

To prove Lemma 3.44, we need to know: (1) we can add a single axiom to T ; (2) we can add a
new variable to serve as a witness for an existential; and (3) we can repeat both of these steps.

3.45. Lemma. Let T ⊬X ϕ and ψ ∈ LXform(A). Then either T ∪ {ψ} ⊬X ϕ or T ∪ {¬ψ} ⊬X ϕ.

Proof . As in propositional logic (Lemma 3.34).

3.46. Lemma. Let T ⊬X ϕ, and let ψ ∈ LX∪{x}
form (A) such that T ⊢X ∃xψ. Then there is a variable

y such that ψ[x 7→ y] is safe and T ∪ {ψ[x 7→ y]} ⊬X∪{y} ϕ.

Proof . Let y ̸∈ X ∪ {x} with ψ[x 7→ y] safe, so that ∃xψ ∼α ∃y ψ[x 7→ y] (Definition 4.2 from
Appendix on substitution). If we had T ∪ {ψ[x 7→ y]} ⊢X∪{y} ϕ, then by (∃E) applied to T ⊢X ∃xψ,
we would have T ⊢X ϕ.

3.47. Lemma. Let T0 ⊆ T1 ⊆ · · · be theories, with free variables from X0 ⊆ X1 ⊆ · · · respectively,
such that Tn ⊬Xn ϕ for each n. Then

⋃
n Tn ⊬⋃

n Xn
ϕ.

Proof . Suppose
⋃
n Tn ⊢⋃

n Xn
ϕ. By syntactic compactness (Proposition 3.34), there are finitely

many ϕ1, . . . , ϕk ∈
⋃
n Tn with free variables from x1, . . . , xl ∈

⋃
nXn such that {ϕ1, . . . , ϕk} ⊢x1,...,xl

ϕ. Let n be large enough so that ϕ1, . . . , ϕk ∈ Tn and x1, . . . , xl ∈ Xn. Then by variable weakening
(Corollary 3.33), {ϕ1, . . . , ϕk} ⊢Xn ϕ, and then by weakening, Tn ⊢Xn ϕ.

We can now repeat step (1) to achieve completeness:

3.48. Lemma. Let T ⊬X ϕ. Then there is a complete theory T ′ ⊇ T , still with free variables from
X, such that T ′ ⊬X ϕ.

Proof . The proof is the same as in propositional logic (Lemma 3.33): enumerate LXform(A), and for
each formula, add it or its negation to T using Lemma 3.45, then take the union of these theories
and use Lemma 3.47. (If LXform(A) is uncountable, use transfinite induction or Zorn’s lemma.)

41

Next, we use step (2) to achieve the witness property for all formulas with the original free
variables, after which we need to repeat both steps (1) and (2) to handle the newly added variables:

3.49. Lemma. Let T ⊬X ϕ. Then there is T ′ ⊇ T with free variables from some X ′ ⊇ X such that
T ′ ⊬X′ ϕ, and T ′ has the witness property for all existential formulas ∃xψ which are proved by T
over X (rather than by T ′ over X ′).

Proof . The proof is similar to the previous proof, using Lemma 3.46 to extend T , X for each possible
∃xψ with free variables from X. If LX∪{x}

form (A) is countable, enumerate LX∪{x}
form (A) = {ψ0, ψ1, . . . },

and inductively define an increasing sequence of theories T0 ⊆ T1 ⊆ · · · with free variables from
X0 ⊆ X1 ⊆ · · · ⊆ V respectively, so that Tn ⊬Xn ϕ for each n, as follows:

• Let T0 := T and X0 := X.
• Given Tn and Xn, if Tn ⊬Xn ∃xψn, let Tn+1 := Tn and Xn+1 := Xn. Otherwise, by

Lemma 3.46, there is a variable yn such that ψn[x 7→ yn] is safe and
Tn+1 := Tn ∪ {ψn[x 7→ yn]} ⊬Xn+1:=Xn∪{yn} ϕ.

Now let T ′ :=
⋃
n Tn, X ′ :=

⋃
nXn. Then

• T ′ has the witness property for all ∃xψ proved by T over X, since ψ must be ψn for some
n, whence T ⊢X ∃xψn implies Tn ⊢Xn ∃xψn by (variable) weakening, so by definition
of Tn+1, Xn+1, we have yn ∈ Xn+1 ⊆ X ′ and (safe) ψn[x 7→ yn] ∈ Tn+1 ⊆ T ′ whence
T ′ ⊢X′ ψn[x 7→ yn] by (A).

• T ′ ⊬X′ ϕ by Lemma 3.47, since T0 = T ⊬X0=X ϕ, so by induction, Tn ⊬Xn ϕ for each n.
If LX∪{x}

form (A) is uncountable, use either transfinite induction or Zorn’s lemma.

Proof of Lemma 3.44. Define an increasing sequence of theories T0 ⊆ T1 ⊆ · · ·, with free variables
from X0 ⊆ X1 ⊆ · · · ⊆ V, so that Tn ⊬Xn ϕ for each n, by induction as follows:

• Let T0 := T and X0 := X.
• Given Tn and Xn, by Lemma 3.48, there is complete T ′

n ⊇ Tn with free variables from Xn

such that T ′
n ⊬Xn ϕ, and then by Lemma 3.49, there is Tn+1 ⊇ T ′

n with free variables from
Xn+1 ⊇ Xn which has the witness property for all existentials proved by T ′

n over Xn and
still satisfies Tn+1 ⊬Xn+1 ϕ.

Let T ′ :=
⋃
n Tn, X ′ :=

⋃
nXn. Then

• T ′ is complete (over X ′), since for any ψ ∈ LX′
form(A), we have FV(ψ) ⊆ Xn for some

n, whence by completeness of T ′
n, either T ′

n ⊢Xn ψ or T ′
n ⊢Xn ¬ψ, and so by (variable)

weakening, either T ′ ⊢X′ ψ or T ′ ⊢X′ ¬ψ.
• T ′ has the witness property (over X ′), since for any ∃xψ ∈ LX′

form(A) such that T ′ ⊢X′ ∃xψ,
by syntactic compactness, we have Tn ⊢Xn ∃xψ for some n, whence T ′

n ⊢Xn ∃xψ by
weakening, so since Tn+1 has the witness property for existentials proved by T ′

n over Xn,
there is t ∈ LXn+1

term (A) and ψ′ ≡α ψ with ψ′[x 7→ t] safe and Tn+1 ⊢Xn+1 ψ
′[x 7→ t], so by

(variable) weakening, T ′ ⊢X′ ψ′[x 7→ t].
• T ′ ⊬X′ ϕ by Lemma 3.47.

(Note that there is no need to go into the transfinite here, since we’re not enumerating formulas.)

This concludes the proof of the completeness theorem.

3.50. Corollary (of soundness and completeness). For T ⊆ LXform(A) and ϕ ∈ LXform(A),
T ⊢X ϕ ⇐⇒ T |=X ϕ.

3.51. Corollary. T is consistent iff it is satisfiable.
42

4. Compactness

By syntactic compactness (Proposition 3.34) and Corollary 3.50,

4.1. Corollary (compactness). If T |=X ϕ, then there are finite T ′ ⊆ T and X ′ ⊆ X containing all
free variables in T ′ such that T ′ |=X′ ϕ.

4.2. Corollary. If T is a theory with free variables from X, and every finite T ′ ⊆ T with free
variables from finite X ′ ⊆ X is satisfiable (over X ′, i.e., there is a structure M and α : X ′ → M
with M |=α T ′), then T is satisfiable (over X, i.e., there is M and α : X → M with M |=α T).

Proof . Take ϕ := ⊥.

As a first application, we have a general phenomenon of first-order logic: the inability to tell
infinite cardinalities apart.

4.3. Theorem (upward Löwenheim–Skolem5). Let T ⊆ L∅
form(A) have models of cardinality ≥ n

for each n ∈ N, i.e.,
(i) either T has an infinite model,
(ii) or T has arbitrarily large finite models.

Then T has models of cardinality ≥ |X| for every set X.

Proof . As usual, we treat X as a set of variables. Consider

T ′ := T ∪ {¬(x = y) | x ̸= y ∈ X}

with free variables from X. A model of it consists of an A-structure M together with a variable
assignment α : X → M such that M |=α T ′, which means M |= T (since T has no free variables),
and also M |=α ¬(x = y) for each x ̸= y ∈ X, which means exactly that α : X → M is injective.
So T ′ is satisfiable iff M has a model of cardinality ≥ |X|. By compactness, it suffices to show
that for every finite X ′ ⊆ X and T ′′ ⊆ T ′ with free variables from X ′, there is a model M′ |=α′ T ′′

where α′ : X ′ → M ′. Indeed, since |X ′| ∈ N, we may let M′ be a model of cardinality ≥ |X ′|, and
α′ : X ′ → M ′ be an injection, so that M′ |=α′ T ′′ for the same reason as before.

4.4. Example. The following classes K of structures are not axiomatizable in first-order logic:
• all finite sets
• all finite fields
• all finite abelian groups
• all finite posets
• all finite graphs
• . . .

Indeed, since there are arbitrarily large finite structures of each of these types, any theory satisfied
by all of them must also be satisfied by some infinite structure, by the preceding Theorem.

4.5. Example. For any infinite A-structure M, the class of structures isomorphic to M is not
first-order axiomatizable, since any theory satisfied by M must also be satisfied by a structure of
cardinality > |M | (e.g., ≥ |P(M)|, which implies > |M | by Cantor’s theorem).

5This is one formulation of the theorem that usually goes by this name. Other versions may be obtained by applying
this version to the theory of a particular infinite structure in a language that includes a constant symbol for each
element, and/or by carefully counting the cardinalities of the models constructed in the proof of the completeness
theorem above.

43

4.6. Example. Consider the structure M := N equipped with the usual linear order ≤. By
Löwenheim–Skolem, there is another {≤}-structure N that is uncountable but also satisfies Th(N).
This means N “looks just like” N, as far as the first-order properties of the ordering can tell, despite
being much larger:

• In particular, since N is linearly ordered, Th(N) includes the linear order axioms (Exam-
ple 2.25), hence N is also linearly ordered.

• Since N has a least element, i.e., satisfies the axiom ∃x0 ∀y (x0 ≤ y), so does N ; let us call
its least element 0N (to distinguish it from the number 0).

• Since N has a second-least element, i.e., satisfies the axiom
∃x1 ∃x0 (¬(x0 = x1) ∧ ∀y (¬(x0 = y) ↔ x1 ≤ y)),

so does N ; let us call its least element 1N .
• Similarly, N has a next-least element 2N , followed by 3N , etc.
• However, since N is uncountable, it must contain other elements which are strictly greater

than nN for each n ∈ N. In other words, N must contain “infinite” elements (even though
it looks just like N)!

4.7. Exercise. Show that N above can be partitioned into the initial segment {0N , 1N , . . . } (which
is order-isomorphic to N), followed by some uncountable number of contiguous intervals each of
which is order-isomorphic to Z.

(In fact it is possible to construct explicit examples of such N , e.g., N followed by R × Z ordered
lexicographically. However, it takes some work to show that this linear order indeed satisfies Th(N).)

4.8. Example. Consider the ordered field R. By Löwenheim–Skolem, there is another ordered field
R that has much larger cardinality than R (e.g., ≥ |P(R)|), but also satisfies Th(R). Similarly to
the preceding example, it can be shown that any such field must contain “infinite elements”, i.e.,
≥ n := 1 + · · · + 1 for all n ∈ N, and hence (being an ordered field) also “infinitesimals” which are
positive but ≤ 1/n for every n > 0. In other words, there are “number systems” which look just
like the reals, as far as first-order logic can tell, but which have infinities!

4.9. Remark. In fact, Th(R) has been extensively studied, and its models are well-understood. A
set of axioms implying all of Th(R) consists of the ordered field axioms (Example 2.31), plus

• every positive element has a square root;
• every odd-degree polynomial has a root (an axiom schema, one for each odd degree n saying

∀a0 · · · ∀an−1 ∃x (xn + an−1x
n−1 + · · · + a0 = 0), where xn is an abbreviation for x · · ·x).

Models of these axioms are known as real-closed fields.6 There are many interesting examples,
the smallest one being the field of real algebraic numbers (i.e., real roots of rational polynomials,
such as

√
2 or 3

√√
5 −

√
7) which is countable. Examples larger than R may be built by considering

certain fields of power series like x2 − x
1
2 + x

1
3 − · · ·.

4.10. Exercise. Apply the Löwenheim–Skolem theorem to the infinite line graph on Z:
· · · −2 −1 0 1 2 3 · · ·

What conclusions can you draw from an uncountable model of Th(Z)?

4.11. Exercise. Show that the class of locally finite graphs, i.e., graphs in which each vertex has
finitely many neighbors, is not axiomatizable by a first-order theory.

4.12. Exercise. Show that the class of well-orders, i.e., linear orders in which there is no infinite
decreasing sequence, is not axiomatizable by a first-order theory.

6These are to R as algebraically closed fields of characteristic 0 are to C.
44

4.A. Application: nonstandard analysis. We now give a generalization of the Löwenheim–
Skolem Theorem 4.3, that provides a ready-made recipe for producing structures like those above
that “look like” a familiar set, but with extra elements in “every place they could possibly appear”.

4.13. Definition. Let M be an arbitrary set. The complete signature of M is the first-order
signature AM with a symbol denoting every possible function or relation on M . That is, for n ∈ N,

(AM)nfun := MMn
, (AM)nrel := P(Mn).

The complete structure of M is the AM -structure M with each symbol interpreted as itself:
fM := f : Mn → M, RM := R ⊆ Mn

for each f ∈ (AM)nfun and R ∈ (AM)nrel.

4.14. Theorem. For any set M , there is another model M∗ of the AM -theory Th(M) of the
complete structure of M , called a nonstandard extension of M , which “contains elements
satisfying any finitely consistent family of conditions”, in the following sense. Let us write

f∗ := f M∗ : M∗ n → M∗ , R∗ := R M∗ ⊆ M∗ n

for the interpretations in M∗ of f : Mn → M and R ⊆ Mn. Then for any n ∈ N and family of
n-ary relations F ⊆ P(Mn) with the finite intersection property, meaning R1 ∩ · · · ∩Rk ̸= ∅
for any finitely many R1, . . . , Rk ∈ F , we have

⋂
R∈F R∗ ̸= ∅.

Proof . For each F ⊆ P(Mn) with the finite intersection property, let xF ,1, . . . , xF ,n be new variables,
and let X be the set of all of these new variables, for all F . Consider the AM -theory

T := Th(M) ∪ {R(xF ,1, . . . , xF ,n) | F ⊆ P(Mn) has FIP, R ∈ F} ⊆ LXform(AM).

A model consists of M∗ |= Th(M) equipped with a variable assignment α : X → M∗ such that

(α(xF ,1), . . . , α(xF ,n)) ∈
⋂
R∈F

R∗

for each family F with the finite intersection property. Thus by compactness, it suffices to show
that for every finite X ′ ⊆ X and finite T ′ ⊆ T with free variables from X ′, T ′ is satisfiable. We
may assume without loss of generality that X ′ consists of xF ,1, . . . , xF ,n for all F in some finite list
F1, . . . ,Fm each with the FIP (by enlarging X ′ to such a set if necessary). Then each axiom in T ′

is either in Th(M), or of the form R(xF ,1, . . . , xF ,n) for some R in one of F = F1, . . . ,Fm. Define
α : X ′ −→ M

xF ,1, . . . , xF ,n 7−→ any n-tuple in
⋂
R∈F

R(xF,1,...,xF,n)∈T ′

R

for each F = F1, . . . ,Fm, using that each such intersection is nonempty by the FIP and the fact
that T ′ is finite. Then M |=α T ′.

4.15. Remark. In particular, in the above setup, for each element a ∈ M , we may treat a as a
constant (nullary function); then a is denoted by a constant symbol in AM , hence also has an
interpretation a∗ = a M∗ in the AM -structure M∗ . This defines a function

∗ : M −→ M∗

a 7−→ a∗ .

This function is injective, since for any a ̸= b ∈ M , the complete structure M satisfies the AM -
sentence ¬(a = b), which is hence in Th(M), hence also satisfied by M∗ . Hence, we may think of
the function ∗ as “embedding” M inside the (usually much larger) M∗ .

45

4.16. Example. Consider M = N. The above gives us a bigger set N∗ , together with an injection
∗ : N ↪−→ N∗ .

Moreover, N∗ has its own versions f∗ , R∗ of every function f or relation R on N; and these all
behave the same way (as far as first-order logic can tell) as in N.

For example, the linear order ≤ ⊆ N2 extends to a binary relation ≤∗ ⊆ N∗ 2, which is also a
linear order because ≤ was; and ∗ : N → N∗ is an order-embedding, i.e., for any a, b ∈ N,

a ≤ b ⇐⇒ a∗ ≤∗ b∗ ,

since if a ≤ b holds in N then “a ≤ b” is an AN-sentence in Th(N) hence also satisfied by N∗ , and
similarly if a ̸≤ b in N then “¬(a ≤ b)” is satisfied by N∗ . Moreover, 0∗ ∈ N∗ is the least element,
1∗ ∈ N∗ is the second-least, etc., again since these are described by first-order AN-sentences.

We also have the unary relations Un := {a ∈ N | a ≥ n} ⊆ N; hence we get unary relations
Un

∗ ⊆ N∗ . The family {Un}n∈N satisfies the FIP, since Um ∩ Un = Umax(m,n); hence⋂
n∈N

Un
∗ ̸= ∅.

We have Un
∗ = {a ∈ N∗ | a ≥∗ n∗ }, i.e., ∀a ∈ N∗ (a ∈ Un

∗ ⇐⇒ a ≥∗ n∗), since the AN-sentence
∀x (Un(x) ↔ x ≥ n) (where n is a constant symbol) holds in N, hence also in N∗ . Thus an element of⋂
n∈N Un

∗ is “infinite”, i.e., strictly bigger than n∗ for each n ∈ N, thereby recovering Example 4.6.
Unlike that example, here we also have every other first-order structure we can dream of on N.

For example, there is a binary operation +∗ : N∗ 2 → N∗ , which is associative, commutative, has
identity element 0∗ , order-preserving, etc. Similarly there is a binary operation ·∗ : N∗ 2 → N∗ which
distributes over +∗ , etc. The set of prime numbers P ⊆ N is a unary relation, hence we get a set of
“nonstandard primes” P∗ ⊆ N∗ , such that a ∈ P∗ iff a ≥∗ 2∗ and a cannot be written as b ·∗ c for
any b, c ≥∗ 2∗ , etc. Note that P∗ also contains “infinite primes”, since P ∩ Un ̸= ∅ for each n.
4.17. Exercise. Show that the twin primes conjecture holds iff P∗ contains two infinite elements
which differ by 2∗ .
4.18. Example. Similarly, we may consider M = R, to get a nonstandard extension R∗ of R, which
is an ordered field just like R. As in Example 4.16, there are elements a ∈ R∗ which are >∗ r∗ for
any r ∈ R; we call such elements positive infinite. Similarly, we call b ∈ R∗ negative infinite if
b <∗ s∗ for any s ∈ R. If c ∈ R∗ is neither positive infinite nor negative infinite, then that means
s∗ ≤∗ c ≤∗ r∗ for some r, s ∈ R; we call such c finite. Thus the R∗ -line looks like:

R

R∗
finite positive infinitenegative infinite

Note that there is no smallest positive infinite a ∈ R∗ , since if a is positive infinite, then so is a −∗ 1∗

(since for any r ∈ R, we have r∗ +∗ 1∗ = (∗ r + 1) <∗ a, hence r∗ <∗ a −∗ 1∗).
Note also that the “finite” part of the R∗ -line contains much more than the image of ∗ : R → R∗ .

Indeed, just as positive infinite elements exist, we also have⋂
0<ε∈R

(0, ε)∗ ̸= ∅

since the family of sets {(0, ε)} has the FIP in R; elements of this set are called positive infinitesimal.
Similarly, negative elements which are >∗ −ε∗ for every ε > 0 are negative infinitesimal. More
generally, we call c ∈ R∗ infinitesimal if it is <∗ ε∗ and >∗ −ε∗ for every positive real ε.

46

4.19. Exercise.
(a) Show that c ∈ R∗ is positive infinitesimal iff 1∗ /∗ c is positive infinite.
(b) Show that

finite +∗ finite = finite,
finite ·∗ finite = finite,

infinitesimal +∗ infinitesimal = infinitesimal,
finite ·∗ infinitesimal = infinitesimal,

Thus, the set of finite elements forms a subring of R∗ , inside of which the infinitesimal
elements form an ideal. In particular,

a ≈ b :⇐⇒ a −∗ b is infinitesimal

defines a (coset) equivalence relation on R∗ .
(c) Show that every finite c ∈ R∗ is ≈ r∗ for a unique r ∈ R, called the standard part of c.

[Hint: take a supremum.]
(d) Conclude that the quotient ring {finite elements of R∗ }/{infinitesimals} is isomorphic to R.

You probably know that the early pioneers of calculus thought in terms of “infinitesimals”, e.g.,
the derivative of a function f at x is given by

f ′(x) = f(x+ ∆x) − f(x)
∆x

where ∆x is a nonzero but “infinitesimally small” real number. This wasn’t made rigorous until the
ε-δ definition was introduced, which did away entirely with infinitesimals and infinities, except as
an intuitive motivating concept.

Much later, in the 1960s, Robinson showed that the “infinitesimal” view can in fact also be made
rigorous, with the help of first-order logic: the key insight is that the “infinitesimal” ∆x is not a real
number, but rather lives in the extended field R∗ , which however (being a model of Th(R)) obeys
the same first-order properties as R. The resulting viewpoint is called nonstandard analysis, and
has since found widespread applications in many areas, not just analysis. Here is a small sampler:

4.20. Proposition. Let f : R → R be a function and a, b ∈ R. We have

lim
x→a

f(x) = b

iff for all infinitesimal 0∗ ̸= ∆a ∈ R∗ , we have f∗ (a∗ +∗ ∆a) ≈ b∗ .

Proof . The standard definition of limx→a f(x) = b is

∀ε > 0 ∃δ > 0 ∀−δ < ∆a < δ, ∆a ̸= 0 (−ε < f(a+ ∆a) − b < ε).(∗)

For fixed ε > 0 and δ > 0, the statement

∀−δ < ∆a < δ, ∆a ̸= 0 (−ε < f(a+ ∆a) − b < ε)

is the interpretation in R of a first-order AR-sentence (where every symbol except for the variable
∆a is part of the signature AR). Thus, it is equivalent to the interpretation in R∗ :

∀ −δ∗ <∗ ∆a <∗ δ∗ , ∆a ̸= 0∗ (−ε∗ <∗ f∗ (a∗ +∗ ∆a) −∗ b∗ <∗ ε∗).

Thus, (∗) is equivalent to

∀ε > 0 ∃δ > 0 ∀ −δ∗ <∗ ∆a <∗ δ∗ , ∆a ̸= 0∗ (−ε∗ <∗ f∗ (a∗ +∗ ∆a) −∗ b∗ <∗ ε∗).(†)

(Note that we did not translate the entire (∗) to R∗ , but only the part inside the first two quantifiers.)
47

If (†) holds, then for every infinitesimal 0∗ ̸= ∆a ∈ R∗ , for every ε > 0, letting δ > 0 be given by
(†), we have that −δ∗ <∗ ∆a <∗ δ∗ (since ∆a is infinitesimal), thus by (†),

−ε∗ <∗ f∗ (a∗ +∗ ∆a) −∗ b∗ <∗ ε∗ ;
since ε > 0 was arbitrary, this shows that f∗ (a∗ +∗ ∆a) −∗ b∗ is infinitesimal, i.e., f∗ (a∗ +∗ ∆a) ≈ b∗ .

Conversely, if (∗) fails, there is some ε > 0 such that for every δ > 0,
Dδ := {∆a ∈ R | (−δ < ∆a < δ) ∧ (∆a ̸= 0) ∧ ¬(−ε < f(a+ ∆a) − b < ε)} ≠ ∅.

Note that for δ ≤ δ′, we have Dδ ⊆ Dδ′ ; thus these sets Dδ have the finite intersection property. So
there is ∆a ∈

⋂
δ>0 D∗ δ, which by reinterpreting the formula defining Dδ in R∗ means

∀δ > 0 (−δ∗ <∗ ∆a <∗ δ∗) ∧ ∆a ̸= 0∗ ∧ ¬(−ε∗ <∗ f∗ (a∗ +∗ ∆a) −∗ b∗ <∗ ε∗),
i.e., ∆a is nonzero infinitesimal but f∗ (a∗ +∗ ∆a) −∗ b∗ is not infinitesimal, i.e., f∗ (a∗ +∗ ∆a) ̸≈ b∗ .

4.21. Exercise. Using the preceding result and Exercise 4.19, give simple proofs of the limit laws:
lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x),

lim
x→a

(f(x) · g(x)) = lim
x→a

f(x) · lim
x→a

g(x),

assuming the limits of f, g exist.

It should be clear from Proposition 4.20 that the translation from the classical ε-δ definition to
the nonstandard one is completely mechanical, and has nothing to do with limits per se. Similarly:

4.22. Exercise. Let f : R → R.
(a) For b ∈ R, limx→+∞ f(x) = b iff for all positive infinite a ∈ R∗ , we have f∗ (a) ≈ b∗ .
(b) f is continuous iff

∀a ∈ R ∀b ∈ R∗ (a∗ ≈ b =⇒ f∗ (a∗) ≈ f∗ (b)).
(c) f is uniformly continuous iff

∀a ∈ R∗ ∀b ∈ R∗ (a ≈ b =⇒ f∗ (a) ≈ f∗ (b)).

Recall that “limits of truth assignments” also played an important role in propositional logic
(Definition 2.57 in notes). We can similarly formulate this notion of “limit” in nonstandard terms:

4.23. Exercise. Let A be an alphabet (for propositional logic), let M := {0, 1}A be the set of truth
assignments, and let M∗ be a nonstandard extension. For a, b ∈ M∗ , we write

a ≈ b :⇐⇒ ∀ϕ ∈ L(A) (a ∈ Mod(ϕ)∗ =⇒ b ∈ Mod(ϕ)∗),
pronounced “a, b are infinitesimally close”. (Note: we do not define “infinitesimal” here.)

(a) Show that ≈ is a symmetric, hence an equivalence relation on M∗ .
(b) Show that every a ∈ M∗ is ≈ m∗ for a unique m ∈ M , called the standard part of a.
(c) Show that a set of truth assignments K ⊆ M is axiomatizable iff every m ∈ M for which

m∗ is infinitesimally close to some a ∈ K∗ is in K.
(d) Show that a set of truth assignments K ⊆ M is axiomatizable by a single formula iff for

every two a, b ∈ M∗ which are infinitesimally close, we have a ∈ K∗ iff b ∈ K∗ .

48

	1. First-order formulas
	1.A. Free and bound variables

	2. First-order semantics
	2.A. Interpretation of terms and formulas
	2.B. Theories
	2.C. Homomorphisms and definability
	2.D. Optional: infinitary logic
	2.E. Application: affine geometry of the plane

	3. First-order proofs
	3.A. Natural deduction
	3.B. Rules for variables
	3.C. Soundness and completeness

	4. Compactness
	4.A. Application: nonstandard analysis

