
NOTES ON SET THEORY

1. Introduction

Throughout mathematics, sets are used as one of several fundamental types of mathematical
objects, along with numbers, ordered pairs, functions, etc. But it turns out that sets are special, in
that every other type of mathematical object can be “compiled” into sets. For example:

• A function f : X → Y can be “compiled” into the set of ordered pairs {(x, f(x)) | x ∈ X},
sometimes called its graph; see Definition 2.42 and Remark 2.47.
• An ordered pair (x, y) can be “compiled” into the set {{x}, {x, y}} (among many other

possibilities); see Definition 2.30 and Exercise 2.31.
• The natural number 3 can be “compiled” into {0, 1, 2}, where 2 := {0, 1}, 1 := {0}, and

0 := ∅ = {}; thus
3 = {{}, {{}}, {{}, {{}}}}.

In this role, set theory serves as the “machine language” (or if you prefer, “assembly language”)
underlying the higher-level language of ordinary math. Part of the goal of this course is to introduce
this “machine language” and the “compilation” process from higher-level math.

Aside from serving as a low-level foundations for the rest of math, set theory also studies several
mathematical concepts of fundamental importance in their own right, such as induction, cardinality,
and choice. You’ve surely encountered instances of these concepts already in other areas; in this
course, we will define them and develop their basic theory in full generality.

2. Axioms

Informally, a set A is a collection of objects. Given A and some other object x, you are allowed
to ask whether or not x is in the collection A, denoted

x ∈ A.
Moreover, this is the only feature of a set: it is completely determined by what all of its elements
are. This is captured by the

Axiom of Extensionality 2.1. For two sets A,B,

A = B ⇐⇒ ∀x (x ∈ A ⇐⇒ x ∈ B).

The word “axiom” means that this assertion is assumed, rather than proved as a theorem would
be. Every theorem in math must be proved from simpler assertions; we must necessarily start
somewhere, with some basic statements we consider so intuitively unobjectionable that we’re willing
to take them on faith, hence declare them to be axioms.

Similarly, we must take some basic mathematical concepts as undefined in terms of simpler ones.
Recall also that in set theory, all other mathematical objects are defined from sets. Thus, formally:

Definition 2.2. The word set is a synonym for “mathematical object”, and is left undefined.
There is a binary relation ∈ between sets, also undefined. That is, for any sets (i.e., mathematical

objects) x,A, we can connect these two “nouns” via the “verb” ∈ into the “complete sentence”

x ∈ A.
This complete sentence does not “mean” anything; the only thing we know about it is that the
Axiom of Extensionality holds (not because of any justification, but only because we said so).
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2.A. Comprehension. Conceptually, the Axiom of Extensionality tells us that sets turn assertions,
i.e., “complete sentences”, into objects, i.e., “nouns”. In math, as in English, these are two entirely
distinct grammatical categories:

• “It snowed a lot this winter” is a complete sentence.
• “That it snowed a lot this winter” is not a complete sentence, but rather a noun (phrase).
• “It is true that it snowed a lot this winter” is again a complete sentence, with the same

meaning as the first sentence.
• “It is false that it snowed a lot this winter” is also a complete sentence, with an entirely

different meaning.
• “I know that it snowed a lot this winter” is also a complete sentence, with a third meaning.

Similarly:

• R (the set of real numbers) is a noun.
• “x ∈ R” is a complete sentence (that depends on the variable x).
• “x ̸∈ R” is a complete sentence with a different meaning.

The Axiom of Extensionality tells us that a set A (noun) is completely determined by the meaning
of the assertion “x ∈ A”. What about the reverse procedure, the mathematical analog of the English
word “that”, to turn an assertion (depending on a variable) into a set?

Axiom of Comprehension 2.3. For any mathematical assertion ϕ(x) depending on a variable x,
there is a (unique, by Extensionality) set A such that

∀x (x ∈ A ⇐⇒ ϕ(x)).

This set A is denoted

{x | ϕ(x)}.

Here, by a “mathematical assertion”, we mean an assertion that can be expressed using the basic
binary relation ∈, as well as the basic equality relation =, using the usual logical operations of
“and”, “or”, “not”, ∃, and ∀. The variable x is allowed to appear in this expression, as are any
previously known mathematical objects (i.e., sets).1

Example 2.4. ∅ is an abbreviation for {x | false}, where “false” is a nullary “or”, or if you prefer,
some arbitrary trivially false statement, such as “x ̸= x”.

Similarly, for finitely many objects x1, . . . , xn, let {x1, . . . , xn} := {x | x = x1 or · · · or x = xn}.

Example 2.5. For a set X and assertion ϕ(x), define the abbreviation

{x ∈ X | ϕ(x)} := {x | x ∈ X and ϕ(x)}.

Example 2.6. For two sets A,B, define the abbreviation

A ⊆ B :⇐⇒ ∀x (x ∈ A =⇒ x ∈ B).

Then for a set X, its powerset is

P(X) := {A | A ⊆ X} = {A | ∀x (x ∈ A =⇒ x ∈ X)}.

1Formally, ϕ should be a first-order formula in the signature of set theory {∈}, with some free variables, and with
other sets assigned to all variables except for x. That is, if y1, . . . , yn are the other free variables except x appearing
in ϕ, then the “Axiom of Comprehension” is really an axiom schema, consisting of the sentence

∀y1 · · · ∀yn ∃A∀x (x ∈ A ⇐⇒ ϕ)

for each such formula ϕ.
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Example 2.7. If A is a set of sets (this allows us to avoid having to define what an “indexed
collection of sets (Ai)i∈I” means, for now; see Definitions 2.59 and 2.60), then define⋃

A := {x | ∃A ∈ A (x ∈ A)},⋂
A := {x | ∀A ∈ A (x ∈ A)},

where as usual,

∃A ∈ A (· · · ) :⇐⇒ ∃A (A ∈ A and · · · ),
∀A ∈ A (· · · ) :⇐⇒ ∀A (A ∈ A =⇒ · · · ).

In particular, if A = {A,B} (per Example 2.4),

A ∪B :=
⋃
{A,B},

A ∩B :=
⋂
{A,B}.

Definition 2.8. Naive Set Theory consists of the Axioms of Extensionality and Comprehension.

The above examples, along with the brief descriptions from the Introduction of how other standard
mathematical notions may be “compiled”, should help to convince you that all of “normal” math,
i.e., outside of set theory, may be “compiled” into Naive Set Theory. Unfortunately, Naive Set
Theory is too powerful for its own good:

2.B. Cantor’s theorem and Russell’s paradox.

Theorem 2.9 (Cantor). Let X be a set, f : X → P(X) be a function. Then f is not surjective,
i.e., there is an A ∈ P(X) such that for all x ∈ X, f(x) ̸= A.

Of course, we have not yet reduced the notion of “function” to sets – see Definition 2.42. Thus,
for now, functions should be understood in the informal sense you’re used to from “ordinary” math.

Before giving the one-line proof, we first explain the idea. We want to find a subset A ⊆ X which
does not equal any f(x), which by Extensionality means that A, f(x) must differ on the membership
of at least one element. Luckily for us, we have just enough elements of X to allocate an element
for A, f(x) to differ on for each x: namely, we may allocate x itself. Here is a picture:

X

X

x

f(x)

y

f(y)

z

f(z) A

We visualize the set X as a (horizontal) line, and each of the subsets f(x) ⊆ X as a subset of the
same (vertical) line, so that the entire function f is represented as a subset of the plane X2. The
set A is defined as the subset of the (diagonal) line consisting of precisely the elements not on each
vertical line; thus it cannot equal any of the vertical lines. This proof technique is therefore called
diagonalization.

Proof. Let A := {x ∈ X | x ̸∈ f(x)}. Then for all x ∈ X, x ∈ A ⇐⇒ x ̸∈ f(x), so A ̸= f(x).

Corollary 2.10 (Russell’s paradox). Naive Set Theory is inconsistent (self-contradictory).
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Proof. Let V = {x | true} be the set of all sets (where as in Example 2.4, “true” is a nullary “and”,
or if you prefer, some trivially true statement such as x = x). Note that V = P(V ) (since all objects
are sets). Thus id : V → V = P(V ) is a surjection, contradicting Cantor’s theorem.

If we “plug in” the above proof of Cantor’s theorem into this proof, we get:

Proof. Let A := {x | x ̸∈ x}. Then A ∈ A ⇐⇒ A ̸∈ A, a contradiction.

Note that this latter proof shows that Comprehension, rather than Extensionality, is the problem.
Namely, Comprehension is too “absolutist”: there are general principles of logic2 which tell us that
in any reasonable formalized “mathematical universe”, there will always be informal “meta-concepts”
that our universe cannot “see”. In set theory, this takes the form of “properties” ϕ(x): each such
property does define an informal “meta-collection” of mathematical objects; but Russell’s paradox
says that this collection cannot itself always be an object in the mathematical universe.

Definition 2.11. A class is an informal collection {x | ϕ(x)} defined by a property ϕ(x). That is,
“class” is roughly synonymous with “property”/“mathematical assertion”/“first-order formula” ϕ(x),
except that we think of it as the collection defined by ϕ(x), rather than the expression ϕ(x) itself.3

We say that a class {x | ϕ(x)} is a set if that instance of Comprehension holds, i.e., there is a
(unique, by Extensionality) set A such that ∀x (x ∈ A ⇐⇒ ϕ(x)).

A class which is not a set is called a proper class. For example, the class in the second proof of
Russell’s paradox above is a proper class.

2.C. The theory ZF−− Infinity. The most common way4 out of Russell’s paradox is to restrict the
Axiom of Comprehension so that only “sufficiently small” classes form sets.

(2.12)

{x | ϕ(x)}

X

{x
∈
X
| ϕ(x)}

V := {x | true}

Intuitively speaking, we allow ourselves to build new sets whose “sizes are bounded” in terms of
preexisting ones. For example,

2e.g., the Gödel incompleteness theorems, and Tarski’s undefinability of truth
3Warning: one can easily formalize these “expressions” into mathematical objects, e.g., finite strings of symbols

such as ∧,∨, ∃,∈, etc. But it is then impossible to define, within the language of set theory itself, what such a
formalized expression ϕ(x) means; this is known as Tarski’s undefinability of truth.

4Two other approaches, which we will not discuss in detail, are to (a) declare the formula “x ̸∈ x” appearing in
Russell’s paradox to be invalid, because the elements of a set should always be “simpler” than the set itself, leading to
a theory called Quine’s New Foundations; or (b) disallow the formula “x ̸∈ x” because it mentions negation without
restricting the size of the defined class, leading to a theory called Positive Set Theory.
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Axiom of Powerset 2.13. For any set X, P(X) = {A | A ⊆ X} from Example 2.6 is a set.

This comprehension is allowed, because even though the size of P(X) will always be bigger than
that of X (formally, by Cantor’s theorem; see Theorem 5.33), the size only grows by a “controlled”
amount. Similarly,

Axiom of Union 2.14. For any set A,
⋃
A = {x | ∃A ∈ A (x ∈ A)} from Example 2.7 is a set.

Axiom of Finite Sets 2.15. For any x1, . . . , xn, {x1, . . . , xn} from Example 2.4 is a set.5

As is typical throughout math, instead of assuming an n-ary “combining” operation, it is enough
to assume the nullary and binary cases:

Axiom of Empty Set 2.16. ∅ = {x | false} (Example 2.4) is a set.

Axiom of Pairing 2.17. For any x, y, {x, y} = {z | x = z or y = z} is a set.

Proof of Finite Sets from Union, Empty Set and Pairing. By induction on n.6 For n = 0 this is by
Empty Set. If {x1, . . . , xn} is a set, then {x1, . . . , xn, xn+1} =

⋃
{{x1, . . . , xn}, {xn+1, xn+1}}.

The preceding axioms all allow us to build new sets that are slightly bigger than existing ones.
We now introduce two axiom schemas that say directly that a class smaller than a set is a set.

Axiom of Restricted Comprehension/Separation 2.18. A class contained in a set is a set.
That is, for any property ϕ(x) (as in the original Comprehension 2.3) and set X, if {x | ϕ(x)} ⊆ X,

meaning ∀x (ϕ(x) =⇒ x ∈ X), then {x | ϕ(x)} is a set.
Equivalently, for any ϕ(x) and set X, the intersection X ∩ {x | ϕ(x)} = {x ∈ X | ϕ(x)} from

Example 2.5 is a set; this is depicted in the above picture (2.12).

Proof that these two axioms are equivalent. Assuming that any class contained in X is a set, then

{x ∈ X | ϕ(x)} = {x | x ∈ X and ϕ(x)}
is a class contained in X, hence is a set.

Conversely, assuming {x ∈ X | ϕ(x)} is always a set, we have

{x | ϕ(x)} ⊆ X ⇐⇒ ∀x (ϕ(x) =⇒ x ∈ X) by definition of ⊆
⇐⇒ ∀x (ϕ(x) ⇐⇒ x ∈ X and ϕ(x))

⇐⇒ {x | ϕ(x)} = {x ∈ X | ϕ(x)} which is a set.

Example 2.19. V = {x | true} is not a set. If it were, then every Comprehension {x | ϕ(x)} would
reduce to the Restricted Comprehension {x ∈ V | ϕ(x)}, recovering in particular Russell’s paradox.

Example 2.20. For any nonempty set A,
⋂
A = {x | ∀A ∈ A (x ∈ A)} from Example 2.7 is a set.

Proof. Fix A0 ∈ A. Then ⋂
A = {x ∈ A0 | ∀A ∈ A (x ∈ A)},

since for any x,

∀A ∈ A (x ∈ A) ⇐⇒ x ∈ A0 and ∀A ∈ A (x ∈ A).

Remark 2.21. For A = ∅, the same definition of
⋂
A would yield the entire universe V .

In mathematical practice, one typically only intersects subsets A ⊆ X of a fixed, context-dependent
ambient set X (e.g., closed subsets of a topological space, subgroups of a group, . . . ). In such
contexts, the “right” convention is to define the nullary intersection

⋂
∅ := X.

5This would be an axiom schema.
6Formally, this induction is taking place in the metatheory, i.e., this is really a proof schema: for each n, we get a

different proof of the corresponding axiom in the axiom schema of Finite Sets 2.15.
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While Restricted Comprehension says that any subclass of a set is a set, one might expect more
generally that a class which “injects” into a set ought also be a set. Relatedly, one might also expect
that a class which admits a “surjection” from a set ought also be a set. One needs to be careful
about what this “injection”/“surjection” means: if we assume it is given by a function which is
already a set, then that more-or-less defeats the purpose, since this function will already be an
“upper bound” on its domain/range (see Exercise 2.40). Hence, we need to work once again with
“meta-collections”, i.e., properties, this time of pairs:

Axiom of Replacement 2.22. Let ϕ(x, y) be a property of two variables x, y (and possibly
depending on other known objects). For any set X, if

∀x ∈ X ∀y ∀z (ϕ(x, y) and ϕ(x, z) =⇒ y = z)︸ ︷︷ ︸
“∃ at most one y s.t. ϕ(x, y)”

,

then {y | ∃x ∈ X ϕ(x, y)} is a set.

This axiom is quite powerful:

Exercise 2.23. Prove Restricted Comprehension from Replacement and no other axioms (except
Extensionality).

Exercise 2.24. Another common version of Replacement uses “∃!” instead of “∃ at most one”.

(a) Prove Restricted Comprehension from this version of Replacement and Empty Set.
(b) Prove that the two versions of Replacement are equivalent, using only Empty Set.
(c) Prove yet another version of Replacement that uses “∃ at most a set of”:

∀x ∈ X ∃A∀y (ϕ(x, y) =⇒ y ∈ A).

(You may use Extensionality and all axioms from this subsection.)

Exercise 2.25. Prove Pairing from Replacement, Empty Set, and Powerset.

Definition 2.26. The set theory ZF−−Infinity consists of the Axioms of Extensionality 2.1, Powerset
2.13, Union 2.14, Empty Set 2.16, Pairing 2.17, and Replacement 2.22; we thus also have Restricted
Comprehension 2.18 by Exercise 2.23.

The awkward name with two minus signs is because this theory is lacking two important axioms,
Foundation and Infinity, from the theory known as ZF that will be introduced later; see 3.97
and 3.138. Adding the further Axiom of Axiom 4.2 yields the set theory known as ZFC, which is
widely accepted as the “standard” foundations for mathematics.

(2.27)

Extensionality 2.1 Foundation 3.97

Powerset 2.13

Union 2.14

Empty Set 2.16 Infinity

Pairing 2.17

Restricted Comprehension 2.18

Replacement 2.22 Choice

Z
−

−
In
fi
n
ity

Z−

Z
F −

−
In
fi
n
ity

ZF−

ZF

ZFC
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2.D. Ordered pairs, Cartesian products, relations, functions. We now begin to discuss
the process of “compiling” other types of commonly used mathematical objects into sets. Broadly
speaking, this goes as follows. For the given type of object, we formulate some axioms for it as
if it were primitive, that capture everything we need to know when using this type of object in
mathematical practice. We then “encode” this type of object into sets, and then prove the desired
axioms from the set theory axioms. There may be many reasonable such “encodings”, in which case
it doesn’t matter which one we pick: once we’ve proved the axioms, we know all we need to use the
definition in practice, and never need to think about the encoding again.7

For ordered pairs, we need to know two things about them in practice:

(2.28) For any mathematical objects x, y, there is another object called the pair (x, y).
(2.29) (“Extensionality for pairs”) The only feature of an ordered pair is its two coordinates:

(a, b) = (c, d) ⇐⇒ a = c and b = d.

Definition 2.30 (Kuratowski). For any x, y, let (x, y) := {{x}, {x, y}}.
Proof of (2.28). This is indeed a set, by the Axiom of Pairing 2.17 applied thrice.

Proof of (2.29). ⇐= is obvious (note: unlike in Extensionality 2.1 for sets, where =⇒ was the
obvious direction8). Now suppose (a, b) = (c, d). Then {a} ∈ (a, b) = (c, d) = {{c}, {c, d}}, whence
{a} = {c} or {c, d}, both of which contain c, whence c ∈ {a}, whence c = a. So

{{a}, {a, b}} = (a, b) = (c, d) = (a, d) = {{a}, {a, d}}.
If a = b, then the LHS is {{a}}, hence so is the RHS, hence {a, d} = {a}, hence d = a = b.
Otherwise, {a, b} in the LHS must equal {a, d} in the RHS (since it is not {a} which does not
contain b), hence b ∈ {a, b} = {a, d}, hence b = d (since b ̸= a).

Exercise 2.31. Which of the following encodings also work, i.e., also satisfy (2.28) and (2.29)?

(a) (x, y) := {x, y}
(b) (x, y) := {x, {y}}
(c) (x, y) := {{0, x}, {1, y}}
(d) (x, y) := {x,P(y)}
(e) (x, y) := {P(x),P(y) \ {∅}}
(f) (x, y) := {x, {x, y}} [Hint: this depends on whether the Axiom of Foundation 3.97 holds.]

Definition 2.32. For two classes X,Y , their Cartesian product is

X × Y := {(x, y) | x ∈ X and y ∈ Y } = {p | ∃x ∈ X ∃y ∈ Y (p = (x, y))}.
Proposition 2.33. If X,Y are sets, then so is X × Y .

Proof. For each x, for each y, we have a set (x, y); thus by Replacement 2.22 (applied to the function
ϕ(y, p) :⇐⇒ p = (x, y)), we have a set {x} × Y = {p | ∃y ∈ Y (p = (x, y))}; thus by Replacement
again (applied to ψ(x, s) :⇐⇒ s = {p | ∃y ∈ Y (p = (x, y))}), we have a set

{{p | ∃y ∈ Y (p = (x, y))} | x ∈ X};
now take Union.

7Again, a computer analogy is helpful: the only type of data on (modern) computers is bytes, i.e., strings of 8 bits.
On my computer, the letter ‘M’ is encoded as the byte 010011012, while on yours it may be 110101002; in programming
practice (that’s not super-low-level, e.g., hardware drivers), we never need to think about these encodings.

8There is a philosophical distinction between the notions of sets vs. pairs (other than that only the former can serve
as a foundation for mathematics). Pairs are known as a positive type of object, in that they are originally specified by
how they are created : by combining two other objects (2.28). Thus, the nontrivial direction of Extensionality for
pairs says that if two pairs are the same, then they must have been created the same way. By contrast, sets (in the
set-theoretic sense) are a negative type of object, being specified by how they may be used : by asking if some x is ∈ it.
The nontrivial direction of Extensionality says that if two sets look the same when used, then they are the same.
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Exercise 2.34. Give a different proof that X × Y is a set, using Powerset instead of Replacement,
that however has the disadvantage of depending on our specific chosen encoding of pairs.

Definition 2.35. As indicated above, if F (x) is a mathematical expression (rather than assertion)
that depends on a variable x, and X is a set, we use the shorthand

{F (x) | x ∈ X} := {y | ∃x ∈ X (F (x) = y)},
which is a set by Replacement. Here, by “mathematical expression”, we really mean a “meta-
function”, i.e., its graph is a “meta-relation” defined by a property ϕ(x, y) as in the statement of
Replacement 2.22.

Definition 2.36. A set (or class) R is a binary relation if each of its elements is an ordered pair
(x, y), in which case we write

x R y :⇐⇒ (x, y) ∈ R.
Conversely, if ⋈ is a symbol that already denotes some binary relation, then we abuse notation by
also using ⋈ to denote the class defined by the above. For example,

∈ = {(x, y) | x ∈ y}.

Exercise 2.37. Show that this is a proper class.

Definition 2.38. The domain and range of a binary relation R are

dom(R) := {x | ∃y ((x, y) ∈ R)},
rng(R) := {y | ∃x ((x, y) ∈ R)}.

Proposition 2.39. If R is a set, then so are dom(R), rng(R).

Proof. By Replacement: dom(R) = {x | ∃p ∈ R ∃y (p = (x, y))}, and for each p, there is at most
one x such that ∃y (p = (x, y)), by “Extensionality for pairs” (2.29); similarly for rng(R).

Exercise 2.40. Give another proof using Union instead of Replacement, assuming the Kuratowski
encoding of pairs (cf. Exercise 2.34).

Corollary 2.41. If R is a binary relation and also a set, then it is a subset of X × Y for some sets
X,Y . In that case, we call R a binary relation between X,Y .

Proof. X := dom(R), Y := rng(R) works.

Definition 2.42. A relation f is a function if for each x, there is at most one y such that x f y.
If such unique y exists, then we denote it by f(x).

If f is a function, dom(f) = X, and rng(f) ⊆ Y , then we say that f is a function from X to
Y , denoted f : X → Y , and call Y a codomain of f .

Outside of set theory, functions are usually treated as a primitive type of object, distinct from
sets, much as pairs are. The following axioms dictate how we use functions in practice:9

(2.43) If f : X → Y is a function, and x ∈ X, then we get an object f(x) ∈ Y .
(2.44) (“Extensionality for functions”) For two functions f, g : X → Y , we have

f = g ⇐⇒ ∀x ∈ X (f(x) = g(x)).

(2.45) (“Comprehension for functions”) To define a function f : X → Y , specify for each x ∈ X a
unique f(x) ∈ Y . That is, specify a property ϕ(x, y) such that ∀x ∈ X ∃!y ∈ Y ϕ(x, y).

Exercise 2.46. Verify that the encoding of functions as sets of pairs satisfies these axioms.

9The form of these axioms shows that functions are a negative type, like sets; cf. Footnote 8.
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Remark 2.47. Unlike with pairs (see Exercise 2.31), this standard encoding of functions subjectively
feels fairly “canonical”, and does not involve the same level of trickery as the encoding of pairs.

Nonetheless, we should still keep in mind the distinction between the concept of a function, which
is still best thought of as primitive, and its encoding as a set of pairs. To emphasize this distinction,
people usually define the graph of a function f : X → Y to mean

{(x, f(x)) | x ∈ X},
which formally is the same as f under the standard encoding, but explicitly indicates that we are
thinking of f as a set of pairs rather than a function.

Definition 2.48. For two classes X,Y ,

Y X := {f | f is a function X → Y }.
This is an abuse of notation: there are several other operations denoted the same way in set theory
(see Remark 2.67, Exercise 3.163, Remark 5.30). Less ambiguous notations people sometimes use
include XY,Fun(X,Y ). We think these are too ugly and/or verbose, and so will depend on context
for clarity.

Corollary 2.49 (of Definition 2.32). For sets X,Y , so is Y X .

Proof. Y X is a set of sets of pairs, i.e., Y X ⊆ P(X × Y ).

We assume you are familiar with other standard concepts related to functions, and will have no
difficulties formalizing them into set theory:

Definition 2.50. For relations R ⊆ X × Y and S ⊆ Y × Z, their composition is

S ◦R := {(x, z) ∈ X × Z | ∃y ∈ Y (x R y S z)}
(shorthand for {p ∈ X × Z | ∃x ∈ X ∃y ∈ Y ∃z ∈ Z (p = (x, z) and x R y and y S z)}).

(As usual, the order is “wrong”, ultimately so that we can write f(x) rather than (x)f .)

Exercise 2.51. Prove that if f : X → Y and g : Y → Z are functions, then so is g ◦ f : X → Z.

Definition 2.52. The identity function is (as a class of pairs) the same as the equality relation
=. The identity function on X is its restriction to X, i.e., intersection with X ×X.

Exercise 2.53. Prove that relation composition is associative and has id as identity element.

Example 2.54. The inverse of a binary relation R is

R−1 := {(y, x) | (x, y) ∈ R}.

Exercise 2.55. Let R ⊆ X × Y be a binary relation.

(a) What does R−1 ◦R ⊆ idX mean?
(b) What does R−1 ◦R ⊇ idX mean?
(c) Prove that R is a function X → Y iff R−1 ◦R ?? idX and R ◦R−1 ?? idY , where each ?? is

either ⊆ or ⊇ (which?).
(d) Conclude that for a function f : X → Y , the relation f−1 : Y → X is also a function iff
∀y ∈ Y ∃!x ∈ X (f(x) = y), i.e., f is a bijection.

(e) Show that a function f : X → Y is injective, resp., surjective (defined the usual way), iff
one of the other inclusions in (c) above holds (which?).

Exercise 2.56. For a relation R ⊆ X × Y , define the image R[A] ⊆ Y of a subset A ⊆ X,
specializing to the case when R is a function; R−1[B] ⊆ X is then the preimage of B ⊆ Y .

Show that taking image under a relation preserves arbitrary unions (first write what this means),
and preserves arbitrary intersections iff R = f−1 for a function f : Y → X.
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2.E. Independence of encoding, indexed products and (disjoint) unions. Bijections provide
one way of formalizing the idea that the choice of encoding of ordered pairs, functions, etc., is
irrelevant:

Proposition 2.57. Let (, ) and (, )′ be two ways of encoding ordered pairs, both obeying the axioms
(2.28) and (2.29). Then there is a bijection F (between the classes of ordered pairs encoded either
way) converting between these encodings, namely

F (x, y) := (x, y)′.

In particular, for any sets (or classes) X,Y , letting ×,×′ denote the Cartesian products defined
using either encoding, the above bijection between all pairs restricts to a bijection

F : X × Y −→ X ×′ Y

(x, y) 7−→ (x, y)′.

Proof. We may certainly define the relation F by the above formula, i.e.,

F := {(p, p′) | ∃x, y (p = (x, y) and p′ = (x, y)′)}.
To check that F is a function, we need to know

(p, p′1), (p, p
′
2) ∈ F =⇒ p′1 = p′2.

From (p, p′1) ∈ F , we get that p = (x1, y1) and p′1 = (x1, y1)
′ for some x1, y1, while from (p, p′2) ∈

F , we get that p = (x2, y2) and p′2 = (x2, y2)
′ for some (a priori different) x2, y2; but by the

extensionality axiom (2.29) for (, ), from (x1, y1) = p = (x2, y2) we get x1 = x2 and y1 = y2, whence
p′1 = (x1, y1) = (x2, y2) = p′2. Similarly, F−1 is a function.

Exercise 2.58. Similarly, for any two ways of encoding functions obeying (2.43), (2.44) and (2.45),
show that we have a bijection Y X ≅ Y X′ between the respective sets of functions, for any two sets
X,Y .

Even if we accept the standard (Kuratowski) encoding of pairs, note that there are two obvious
ways to build triples (and higher n-tuples) from pairs:

(x, y, z)1 := ((x, y), z),

(x, y, z)2 := (x, (y, z)).

More generally, in areas such as real analysis we would want to consider “∞-tuples”, i.e., infinite
sequences (x0, x1, . . . ); in fact, we may as well consider arbitrary indexed families (xi)i∈I .

Definition 2.59. An indexed family (xi)i∈I over a set or class I is another name for a function
f with domain I, where xi is another name for f(i).

Definition 2.60. For an indexed family of sets (Ai)i∈I , define the indexed union⋃
i∈I Ai :=

⋃
{Ai | i ∈ I}

(constructed via the Axioms of Union and Replacement).

Exercise 2.61. Show that the concepts of indexed union and union of a set of sets are interchangeable:
conversely, for a set of sets A, ⋃

A =
⋃

A∈AA.

Definition 2.62. For an indexed family of sets (Xi)i∈I , its indexed Cartesian product
∏

i∈I Xi

is the set of all indexed families (xi)i∈I where each xi ∈ Xi.

Proposition 2.63. If (Xi)i∈I is a family of sets indexed over a set I, then
∏

i∈I Xi is a set.

Proof.
∏

i∈I Xi ⊆ (
⋃

i∈I Xi)
I .
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We now have several ways of encoding n-tuples:

Definition 2.64 (preliminary; see Infinity 3.138).

0 := ∅,
1 := {0},
2 := {0, 1},
3 := {0, 1, 2},
...

Exercise 2.65. Let n ≥ 2. We may encode n-tuples as

(x0, . . . , xn−1) := (((x0, x1), x2), . . . xn−1)

(or any other way of writing the parentheses). We may also regard the tuple as an indexed family
over the domain n. Show that there is a canonical bijection converting between these encodings.
For example, for n = 3, for any sets X0, X1, X2, we have bijections

(X0 ×X1)×X2 ≅
∏

i∈3Xi ≅ X0 × (X1 ×X2).

Remark 2.66. Of course, we could not have originally defined ordered pairs via indexed families,
since functions were defined in terms of ordered pairs. But the above encoding still works for n = 2,
given the concept of function, yielding another encoding of ordered pairs.

Remark 2.67. When (X)i∈I is a constant family of sets, note that our definition of
∏

i∈I X agrees

with the set of functions XI (Definition 2.48). In particular, Xn is the set of functions n → X,
which is in canonical bijection with (not equal to) ((X ×X)× · · · )×X.

For “canonical” bijections such as those above, it is common in informal mathematical practice
to treat them as equalities, by “identifying” elements in both sets. An important feature of actual
equality is (one direction of) Extensionality: equal things should be interchangeable in all contexts.
Of course, the Axiom of Extensionality tells us that this literally holds only for actually equal sets.
But for many constructions used in practice, sets in bijection are also “interchangeable”:

Definition 2.68. An operation on sets F (X0, . . . , Xn−1), e.g., ×,P,∩, is called functorial (on
bijections10) if it comes equipped with, for each bijections fi : Xi ≅ Yi, an induced bijection
F (f0, . . . , fn−1) : F (X0, . . . , Xn−1) ≅ F (Y0, . . . , Yn−1). These induced bijections should respect
composition in the fi: if we have another family of bijections gi : Yi ≅ Zi, then we require

F (g0, . . . , gn−1) ◦ F (f0, . . . , fn−1) = F (g0 ◦ f0, . . . , gn−1 ◦ fn−1).

Exercise 2.69. Show that this implies F (idX0 , . . . , idXn−1) = idF (X0,...,Xn−1) and F (f−1
0 , . . . , f−1

n−1) =

F (f0, . . . , fn−1)
−1.

Example 2.70. × is a functorial binary operation: for f0 : X0 ≅ Y0 and f1 : X1 ≅ Y1, we have

X0 ×X1 ≅ Y0 × Y1
(x0, x1) 7→ (f0(x0), f1(x1)),

and it is easily seen that this preserves composition in the fi.

Example 2.71. “Exponentiation”, i.e., sets of functions, is functorial: for f0, f1 as above, we have

XX0
1 ≅ Y Y0

1

h 7→ f1 ◦ h ◦ f−1
0 : Y0 → X0 → X1 → Y1.

10The general context for this concept is the area of math called category theory, which we will not go into.
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Exercise 2.72. Verify that this preserves composition in the fi.

Exercise 2.73. Show that P (powerset) is a functorial unary operation on sets.

Example 2.74.
⋃

(union) is not a functorial unary operation. For example, {∅} ≅ {{∅}}, but⋃
{∅} = ∅ ̸≅ {∅} =

⋃
{{∅}}.

Exercise 2.75. Show that ∪ is not a functorial binary operation either.

This reflects the fact that in mathematical practice, it is unusual to take the union of two (or
more) sets without knowing something about how they are related. Usually, we only take union
of subsets of a given ambient set ; or else, we take a disjoint union of unrelated sets. This latter
concept is again defined up to a choice of encoding:

Definition 2.76. For a family of sets (Xi)i∈I indexed over a set I, its disjoint union
⊔

i∈I Xi is a
set equipped with an indexed family of injections ιi : Xi →

⊔
j∈I Xj whose images are disjoint and

cover
⊔

j∈I Xj . In other words:

(2.77) For each i ∈ I and x ∈ Xi, we have a corresponding element ιi(x) ∈
⊔

i∈I Xi.
(2.78) Each y ∈

⊔
i∈I Xi is equal to such an ιi(x) for a unique i and x ∈ Xi.

One (“standard”) encoding is given by⊔
i∈I Xi := {(i, x) ∈ I ×

⋃
i∈I Xi | x ∈ Xi},

ιi(x) := (i, x).

Exercise 2.79. Show that all encodings of disjoint union obeying these axioms are in canonical
bijection with each other. Moreover,

⊔
i∈I is a functorial “I-ary operation” (define what this means).

We also mention various other “canonical” bijections commonly used throughout math. These
are perhaps not all thought of as converting between different “encodings” of the same concept;
nonetheless, one frequently abuses notation/terminology by treating them as equalities.

Example 2.80. For any set X, there is a bijection between subsets of X and their indicator (or
characteristic) functions:

P(X) ≅ 2X

A 7→

χA : X → 2 = {0, 1}

x 7→

{
1 if x ∈ A,
0 else


f−1[{1}]←[ f.

Example 2.81. For any sets X,Y, Z, we have bijections

ZX×Y ≅ (ZX)Y

f 7→ (y 7→ (x 7→ f(x, y)))

(g(y)(x)←[ (x, y))←[ g,

and similarly ZX×Y ≅ (ZY )X .

Exercise 2.82. Give a bijection P(X × Y ) ≅ P(X)Y .

Exercise 2.83. For an indexed family of sets (Xi)i∈I and a set Y , give a bijection

Y
⊔

i∈I Xi ≅
∏

i∈I Y
Xi .

Exercise 2.84. In particular, P(
⊔

i∈I Xi) ≅
∏

i∈I P(Xi).
12



3. Induction

We turn now to developing the general theory of induction. In contrast to Section 2, which was
largely about set theory as the low-level “machine code” of math, here we are concerned with ideas
which are very widely used in everyday math outside of logic. The low-level aspects will reenter the
picture eventually (especially once we turn to naturals and ordinals); but for the most part, our
discussion will feel much more like “normal” abstract math, akin to algebra, analysis, etc.

Our approach is to treat induction axiomatically : rather than answering “what is induction”, we
will define what can constitute a notion of induction. This is similar to how topology generalizes
from the notion of limit in calculus to spaces equipped with a notion of limit, or how rings generalize
from the arithmetic of numbers to a notion of numbers equipped with arithmetic operations, etc.
The general idea is: we have a set X of elements that we’re inducting on, and a way of “deriving”
new elements from previous ones; we say a principle of induction holds if everything can eventually
be derived. The original induction on N will be a (very) special case of the general notion.

3.A. Monotone set operators and the Knaster–Tarski fixed point theorem.

Definition 3.1. A monotone set operator T : P(X)→ P(X) on a set X is a function obeying

∀A,B ∈ P(X) (A ⊆ B =⇒ T (A) ⊆ T (B)).

A subset A ⊆ X is T -closed if T (A) ⊆ A.

There are many possible interpretations of this simple definition. For the purposes of induction,
we think of T as specifying, for each subset A ⊆ X, the set of new elements T (A) which can be
“derived” from A. Being T -closed means that all elements “derivable” from A are already in A.

Example 3.2. We have a monotone set operator on X = N given by

T (A) := {0} ∪ {n+ 1 | n ∈ A}.
In other words, we start with 0 (the base case), and can derive n+ 1 from n (the inductive case).
The only T -closed subset of N is all of N (this will be taken as the definition of N; see Infinity 3.138).

Example 3.3. We have another monotone set operator on N, given by

T (A) := {n ∈ N | ∀m < n (m ∈ A)}
= {n ∈ N | n ⊆ A} (recalling Definition 2.64; see also Infinity 3.138).

This says that n can be derived once we know everything smaller, and corresponds to the principle
of “strong induction”; see Example 3.11.

Example 3.4. Let X be any set, and let (fi : XNi → X)i∈I be a family of “Ni-ary operations” on
X, where the Ni are arbitrary sets. The set X equipped with such a family (fi)i∈I is sometimes
called an algebra, or more verbosely, a first-order structure over a functional signature. Examples:

(a) R equipped with + : R2 → R, · : R2 → R, − : R → R, 0 : R0 → R, and 1 : R0 → R, or a
subset thereof, e.g., only +,−, 0.

(b) Rn equipped with + : (Rn)2 → Rn (vector addition), 0⃗ : (Rn)0 → Rn (zero vector), and for
each a ∈ R, the unary operation a · (−) : Rn → Rn (scalar multiplication).

(c) P(X) for an arbitrary set X, equipped with ∩,∪,¬,∅, X (where ¬A := X \A).
(d) [−∞,∞] equipped with lim sup : [−∞,∞]N → [−∞,∞] (or lim, if we allow partial functions).
(e) N equipped with 0 : N0 → N and S : N1 → N where S(n) := n+ 1 (successor).

We may then define the monotone set operator

T (A) := {fi(x⃗) | i ∈ I and x⃗ ∈ ANi}.
A T -closed set is then one closed under the operations. For example, in (b), a T -closed set is a
vector subspace of Rn. In (d), T -closed means topologically closed. (e) recovers T from Example 3.2.
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Example 3.5. Let X be an arbitrary set, and define the monotone set operator T on X2 by

T (A) := {(x, x) | x ∈ X} ∪
= {(y, x) | (x, y) ∈ A} ∪
= {(x, z) | (x, y), (y, z) ∈ A}.

Then A ⊆ X2 is T -closed iff A is reflexive, symmetric, and transitive, i.e., an equivalence relation
on X (see Definition 3.44).

Theorem 3.6 (Knaster–Tarski fixed point). Let T : P(X)→ P(X) be a monotone set operator.
For every A ⊆ X, there is a smallest T -closed T (A) ⊇ A, called the T -closure of A, or sometimes
the T -closed subset generated by A. Moreover, T (T (∅)) = T (∅).

Proof. The first claim follows from combining the following two facts, which are useful on their own:

Lemma 3.7. For any monotone set operator T : P(X)→ P(X), the T -closed sets are closed under
arbitrary intersections, i.e., if A ⊆ P(X) is a set of T -closed sets, then so is

⋂
A.

(This includes the case
⋂
A = ∅ from Remark 2.21.)

Proof. For each A ∈ A, we have T (
⋂
A) ⊆ T (A) ⊆ A by monotonicity, whence T (

⋂
A) ⊆

⋂
A.

Proposition 3.8. For any set X and family of subsets A ⊆ P(X), the following are equivalent:

(i) A is closed under intersections (including
⋂
∅ = X from Remark 2.21).

(ii) For every A ⊆ X, there is a smallest A ∈ A such that A ⊆ A.

(Such an A ⊆ P(X) is sometimes called a closure system.)

Proof. (i) =⇒ (ii) Let A :=
⋂
{B ∈ A | A ⊆ B}. Then A ∈ A since A is closed under intersections,

and every other B ∈ A such that A ⊆ B is one of the sets we’re intersecting, hence contains A.
(ii) =⇒ (i) This follows from the preceding lemma, since A 7→ A is easily monotone: if A ⊆ B,

then A ⊆ B ⊆ B ∈ A, whence A ⊆ B.

Finally, to show T (T (∅)) = T (∅): ⊆ is because T (∅) is T -closed; then by monotonicity,
T (T (T (∅))) ⊆ T (T (∅)), whence T (T (∅)) is T -closed, and contains ∅, whence T (∅) ⊆ T (T (∅)).

Definition 3.9. We call a monotone set operator T : P(X)→ P(X) inductive if T (∅) = X, i.e.,
the only T -closed subset of X is the entirety of X.

The following is merely a restatement of the definition of T (∅):

Principle of T -induction 3.10. Let T : P(X)→ P(X) be an inductive monotone set operator.

(a) For any A ⊆ X, if T (A) ⊆ A, then A = X.
(b) Equivalently, for any property ϕ(x) of elements x ∈ X, if

• ∀x ∈ X (x ∈ T ({y ∈ X | ϕ(y)})︸ ︷︷ ︸
IH

=⇒ ϕ(x)) (inductive case),

then ∀x ∈ X, ϕ(x).
(c) Equivalently, any ∅ ̸= B ⊆ X contains a “T -minimal element” x ∈ T (X \B).

These statements are trivially equivalent: (a)⇐⇒ (b) by taking A := {x | ϕ(x)} and ϕ(x) :⇐⇒
x ∈ A; and (a)⇐⇒ (c) by taking A,B to be complements of each other and taking the contrapositive.
The statement (b) is intended to resemble a conventional statement of the ordinary principle of
(weak or strong) induction for N; the “induction hypothesis” (IH) above says “x can be derived from
y for which ϕ is known”. The statement (c) is intended to resemble the “well-ordering principle”; the
conclusion x ∈ T (X \B) means “x ∈ B can be derived from only the elements in the complement
of B”, or that “x does not depend on any other elements of B”.
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Example 3.11. For T from Example 3.2 which closes under 0 and successor S, the above becomes

(a) For any A ⊆ N, if 0 ∈ A and {n+ 1 | n ∈ A} ⊆ A, then A = N.
(b) For any property ϕ(x) of natural numbers x ∈ N, if

• ∀x ∈ N ((x = 0 or x = y + 1 for some y s.t. ϕ(y)) =⇒ ϕ(x)),
then ∀x ∈ N, ϕ(x).

For the T corresponding to “strong induction” from Example 3.3, we instead get

(a) For any A ⊆ N, if ∀n (n ⊆ A =⇒ n ∈ A), then A = N.
(b) For any property ϕ(x) of natural numbers x, if

• ∀x ∈ N ((∀y < x, ϕ(y)) =⇒ ϕ(x)),
then ∀x ∈ N, ϕ(x).

(c) Any ∅ ̸= B ⊆ N contains some x such that ∀y < x (y ∈ N \B), i.e., x ∈ B is minimal.

This last statement (c) is usually known as the “well-ordering principle” (for N).

Exercise 3.12. What is the contrapositive statement (c) for the T corresponding to ordinary
induction from Example 3.2?

Remark 3.13. If a monotone T : P(X)→ P(X) as in Knaster–Tarski 3.6 is not inductive, then
we may restrict it to the subset T (∅) ⊆ X to get an inductive operator T : P(T (∅))→ P(T (∅)).
We thus call T (∅) ⊆ X the inductive part of X (equipped with T ).

Remark 3.14. The proof of the Knaster–Tarski Theorem 3.6 is a “top-down” or (in philosophical
terminology) impredicative construction: in order to build the smallest set obeying some condition,
we had to look at all possible such sets. In other words, to build a simple thing, we had to look
at everything more complicated than it. This is technique is very powerful, but a bit unsatisfying,
since it tells us basically nothing about what the simple thing actually looks like.

A perhaps more satisfying “bottom-up” construction is to start with ∅ (nothing), then add
everything derivable from that, yielding T (∅), then add everything derivable from that, yielding
T 2(∅) = T (T (∅)), etc. After infinitely many steps, we’re done if everything derivable from
T∞(∅) :=

⋃
n∈N T

n(∅) can already be derived from a finite stage; this will be true if the notion of
“derivation” defined by T is “finitary” in nature, e.g., if we’re closing under finitary operations such
as +, · in Example 3.4(a). But if we’re closing under operations such as lim sup (Example 3.4(d))
that can take an infinite sequence as input, then it’s possible that the sequence includes a term in
Tn(∅) for each n. So we have to keep going: T∞+1(∅) := T (T∞(∅)), etc.

(3.15) T (∅) T 2(∅) T 3(∅) · · · T∞(∅) T∞+1(∅)

X

∅

This description is only informal at this stage, because this “transfinite” process is an instance of
the general inductive processes we’re aiming to formalize; see Section 3.J.

Remark 3.16. For a monotone T : P(X)→ P(X), more generally starting from any subset A ⊆ X,
we have a “relative” induction principle for T (A): for any B ⊆ X, if

• A ⊆ B, and
• T (B) ⊆ B,

then T (A) ⊆ B.
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Example 3.17. For T : P(Rn)→ P(Rn) which closes under vector operations from Example 3.4(b),
this says that to prove that a subset B ⊆ Rn contains the linear span of some vectors v⃗i, it suffices
to check that B contains each v⃗i and is itself a linear subspace.

For example, this is how one usually proves that span(A) ⊆ A⊥⊥, for every A ⊆ Rn: clearly
A ⊆ A⊥⊥; and the orthogonal complement B⊥ of every subset is a linear subspace.

However, this “relative” principle of induction is in some sense not needed, since we can always
reduce it to the “absolute” form:

Exercise 3.18. Let T : P(X)→ P(X) be a monotone set operator, and fix A ⊆ X.

(a) Verify that TA(B) := A ∪ T (B) is also a monotone set operator on X.
(b) Show that TA(∅) = T (A), and that the principle of induction 3.10 for TA(∅) agrees with

the “relative” principle of induction for T (A) from Remark 3.16.
(c) Conclude that T (A) = A ∪ T (T (A)).

Exercise 3.19. One other slightly odd feature of the general setup of Knaster–Tarski is that
a general monotone T : P(X) → P(X) need not obey A ⊆ T (A) for all A ⊆ X, e.g., the T
corresponding to ordinary induction (Example 3.2). In other words, we should think of T (A) as
those elements “derivable” from A in exactly one step; the preexisting elements are not necessarily
considered to be “trivially derivable”. Show that this is also an inessential distinction:

(1) Verify that T ′(A) := A ∪ T (A) is also a monotone set operator.
(2) Verify that T ′-closed sets are the same as T -closed sets, hence T ′ = T .

In spite of this trick, it is useful to consider arbitrary monotone T in the general theory of
induction. One advantage of not requiring A ⊆ T (A) is that for the same monotone T , we also have

Exercise 3.20 (dual Knaster–Tarski). Show, using Knaster–Tarski (without redoing its proof),
that for every A ⊆ X, there is a greatest T -open T ◦(A) := B ⊆ A, meaning B ⊆ T (B), called the
T -interior of A. Moreover, T ◦(X) = T (T ◦(X)); and we have the principle of coinduction: for
any other T -open B ⊆ T (B) ⊆ X, we have B ⊆ T ◦(X).

3.B. Examples of induction. In this subsection, we assume we know about ordinary induction,
and other basic facts, for N, R, etc. Our goal is to demonstrate the power of the general framework
of induction, via some interesting examples from many different areas of math.

First, an amusing example of ordinary induction for N:

Example 3.21 (blue-eyed islanders). On an island live 500 inhabitants, 100 of whom have blue
eyes while the other 400 have brown eyes. These islanders are extremely smart, able to immediately
deduce any logically true statements. However, they have a very strict religion that forbids one from
knowing one’s own eye color; anyone who finds out their own eye color is required to commit ritual
suicide the following day at noon in the village square, where all the other islanders can see. One
day, a foreigner visits the island and casually remarks at a village gathering with everyone attending,
“It’s lovely to see another blue-eyed person like myself in this part of the world.” What happens?

Solution. We claim that all of the blue-eyed people will simultaneously commit suicide 100 days
after the foreigner makes the remark. More generally, we will prove by induction that if there are
n ≥ 1 blue-eyed people, they will all commit suicide n days after hearing the remark. If n = 1, the
blue-eyed person finds out they have blue eyes, and so must commit suicide the next day. Now
suppose the claim holds for n; we prove it for n+ 1. Each blue-eyed person sees n other blue-eyed
people, hence knows there are either n+ 1 blue-eyed people in total (if they also have blue eyes) or
n (if they don’t). If there were n blue-eyed people, by the IH, they would commit suicide on the
nth day. So on the nth day, since no one dies, every blue-eyed person figures out there are n+ 1
blue-eyed people, hence that they have blue eyes, hence must commit suicide on day n+ 1.
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Exercise 3.22. What happens to the brown-eyed people?

Exercise 3.23. What new information did the foreigner introduce that wasn’t already known?

Remark 3.24. The philosophical/sociological/economic phenomenon this puzzle illustrates is
known as common knowledge: everyone knows something, and everyone knows that everyone knows
it, and everyone knows that everyone knows that everyone knows it, etc., which can be quite different
than simply everyone knowing it. More complicated forms of induction can show up in common
knowledge situations; see TODO.

We now turn to other forms of induction, i.e., other inductive set operators T : P(X)→ P(X).
In practice, one usually does not bother to explicitly write out the T ; rather, one merely states the
principle of induction, which recall is equivalent to the assertion that T is inductive, and from which
it is usually easy to read off the definition of T .

Proposition 3.25 (principle of Cauchy induction). Let f : N→ N be a strictly increasing function,
i.e., f(n) < f(n+ 1). Suppose A ⊆ N such that

• f(0) ∈ A;
• f(n) ∈ A =⇒ f(n+ 1) ∈ A;
• n+ 1 ∈ A =⇒ n ∈ A.

Then A = N.

Proof. By ordinary induction, f(n) ∈ A for every n ∈ N. Since 0 ≤ f(0) < f(1) < · · · < f(n),
n ≤ f(n) for all n ∈ N (technically, this is again by ordinary induction on n). By ordinary
induction on k and the third property above, n+ k ∈ A =⇒ n ∈ A. Thus for every n ∈ N, from
f(n) = n+ (f(n)− n) ∈ A, we get n ∈ A.

Exercise 3.26. What is the T : P(N)→ P(N) for which the principle of induction yields the above?

Theorem 3.27 (AM–GM inequality). For any n ≥ 1 and x1, . . . , xn ∈ [0,∞), we have

x1 + · · ·+ xn
n

≥ n
√
x1 · · ·xn.

Proof. By Cauchy induction with the increasing function f(n) = 2n.

• For n = 1, it’s trivially true: x1 ≤ x1.
• For n = 2, expand (

√
x−√y)2 ≥ 0 to get x− 2

√
xy + y ≥ 0.

• Suppose it’s true for 2n; we prove it for 2n+1.

x1 + · · ·+ x2n+1

2n+1
=

x1+···+x2n

2n +
x2n+1+···+x2n+1

2n

2

≥
2n
√
x1 · · ·x2n + 2n

√
x2n+1 · · ·x2n+1

2
by IH

≥
√

2n
√
x1 · · ·x2n 2n

√
x2n+1 · · ·x2n+1 by n = 2 case

= 2n+1√
x1 · · ·x2n+1 .

• Finally, suppose it’s true for n+ 1; we prove it for n. WLOG not every xi ̸= 0. Then

x1 + · · ·+ xn
n

=
x1 + · · ·+ xn + x1+···+xn

n

n+ 1

≥ n+1

√
x1 · · ·xn(x1+···+xn

n ) by IH.

Raise to the (n+ 1)th power, divide by x1+···+xn
n > 0, and take the nth root.
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Definition 3.28. The lexicographical ordering on N2 is the binary relation defined as follows:

(a, b) <lex (c, d) :⇐⇒ (a < c) or (a = c and b < d).

Proposition 3.29 (principle of lexicographical induction on N2). Let A ⊆ N2 such that

• for every (a, b) ∈ N2, if every (c, d) <lex (a, b) is in A, then (a, b) ∈ A.

Then A = N2.

Proof. We prove by (strong) induction on a that for every a ∈ N, for every b ∈ N, (a, b) ∈ A.

• Assume (IH) that for every c < a, for every d ∈ N, (c, d) ∈ A. We now induct on b.
– Assume (IH2) that for every d < b, (a, d) ∈ A. Then for every (c, d) <lex (a, b), either

∗ c < a in which case (c, d) ∈ A by (IH), or
∗ c = a and d < b in which case (c, d) ∈ A by (IH2).

Thus every (c, d) <lex (a, b) is in A, and so (a, b) ∈ A by our assumption on A.

Example 3.30 (Ackermann function). Define the following computation on finite nonempty
sequences of natural numbers, that takes a sequence and replaces the last two terms as follows:

(a0, . . . , an−1, 0, y) −→ (a0, . . . , an−1, y + 1),

(a0, . . . , an−1, x+ 1, 0) −→ (a0, . . . , an−1, x, 1),

(a0, . . . , an−1, x+ 1, y + 1) −→ (a0, . . . , an−1, x, x+ 1, y).

For example:
(1, 2) −→ (0, 1, 1)

−→ (0, 0, 1, 0)

−→ (0, 0, 0, 1)

−→ (0, 0, 2)

−→ (0, 3)

−→ (4).

Try starting with (3, 3) instead. [Hint: if you’re very fast, it’ll take you around 2 hours.]

Theorem 3.31. This computation always terminates with a single term.

Proof. First, we prove that starting from any sequence (a0, . . . , an, an+1) with at least two terms,
the computation eventually reaches some (a0, . . . , b), by lexicographical induction on (an, an+1).
Assume (IH) that this happens for every (b0, . . . , bm, bm+1) with (bm, bm+1) <lex (an, an+1).

• If an = 0, we immediately get (a0, . . . , an+1 + 1).
• If an > 0 but an+1 = 0, we get (a0, . . . , an − 1, 1), which has the same length; since

(an − 1, 1) <lex (an, 0), by the IH, we eventually reach some (a0, . . . , b).
• If an, an+1 > 0, we get (a0, . . . , an − 1, an, an+1 − 1) which has one more term, and by the

IH eventually reaches some (a0, . . . , an − 1, b); now since (an − 1, b) <lex (an, an+1), this
eventually becomes some (a0, . . . , c).

Now by induction on n, every sequence of length n > 0 eventually reaches a single term.

Remark 3.32. The Ackermann function A : N2 → N, that computes the single term above
resulting from a pair of terms, is historically important as the first example of a function which
can be computed by a program, but cannot be computed in a programming language that has only
if...else clauses and loops of the form for i = 0,...,n. Such programs are called primitive
recursive, and include virtually all algorithms used in the real world. (They include way more than
commonly considered classes of functions in computational complexity theory, e.g., NP,EXPSPACE.)

For a more general discussion of lexicographical induction, see Exercises 3.159 and 3.163.
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Proposition 3.33 (real number induction). Let A ⊆ [0,∞) (the nonnegative reals) such that

(i) 0 ∈ A;
(ii) A is downward-closed, i.e., y ≤ x ∈ A =⇒ y ∈ A;

(iii) A is closed under increasing limits, i.e., if x0 < x1 < · · · ∈ A is bounded, then limn→∞ xn ∈ A;
(iv) for every x ∈ A, there is some ε(x) > 0 such that ε(x) ∈ A.

Then A = [0,∞).

Proof. We need to use Dedekind-completeness of R: any nonempty subset A of R with an upper
bound has a least upper bound supA. (This is a defining property of R that distinguishes it
from Q, that you would see in a real analysis course.) Suppose A ̸= [0,∞). Then since A is
downward-closed, any element of [0,∞) \ A is an upper bound for A. We also know 0 ∈ A, so
supA exists. We must have supA ∈ A: if not, then supA > 0 (since 0 ∈ A), and we can find a
sequence 0 ≤ x0 < x1 · · · < supA converging to supA from below; since each xi < supA, xi is not
an upper bound for A, hence is below some element of A, hence in A by downward-closure; but this
contradicts (iii). But then supA ∈ A is the greatest element of A, contradicting (iv).

Theorem 3.34. R is connected: if we partition R = A ⊔B nontrivially so that both A,B ̸= ∅,
then some point in one of A,B is a limit of points in the other set.

This is false if we replace R with e.g., [0, 1] ∪ [2, 3], or Q = (Q ∩ (−∞,
√

2)) ⊔ (Q ∩ (
√

2,∞)).

Proof. Let R = A⊔B, WLOG with 0 ∈ A. Suppose that no point in either A or B may be obtained
as a limit of points in the other set. We prove by induction that [0, x) ⊆ A for all x ∈ [0,∞).

(i) Clearly [0, 0) = ∅ ⊆ A.
(ii) Clearly, if [0, x) ⊆ A and y ≤ x, then [0, y) ⊆ A.

(iii) If x0 < x1 < · · · ↗ x such that each [0, xn) ⊆ A, then [0, x) =
⋃

n[0, xn) ⊆ A.
(iv) Finally, suppose [0, x) ⊆ A, but for every ε > 0, we have [0, x+ε) ̸⊆ A, i.e., [0, x+ε)∩B ̸= ∅.

If x ∈ A, then we may write x as a limit of points xn ∈ [0, x+ 1/n) ∩B ⊆ (x, x+ 1/n). If
x ∈ B, then x > 0 since 0 ∈ A; then we may write x as a limit of points in [0, x) ⊆ A. Both
of these contradict our assumption, so there must be some ε > 0 such that [0, x+ ε) ⊆ A.

It follows that [0,∞) =
⋃

x∈[0,∞)[0, x) ⊆ A; similarly (−∞, 0] ⊆ A.

Theorem 3.35 (Heine–Borel). Let A be a set of open intervals (a, b) ⊆ R such that [0, 1] ⊆
⋃
A.

Then there is finite F ⊆ A such that [0, 1] ⊆
⋃
F .

Proof. We will prove by induction that for any x ∈ [0, 1], there is a finite F ⊆ A with [0, x] ⊆
⋃
F .

(i) For x = 0, [0, 0] = {0} is contained a single interval in A.
(ii) If finitely many intervals in A cover [0, x], then they also cover [0, y] for y ≤ x.

(iii) Let x0 < x1 < · · · ↗ x, and assume each [0, xn] is contained in a finite union of intervals in
A. Since [0, 1] ⊆

⋃
A, x belongs to one interval (a, b) ∈ A. Since xi ↗ x, there is n such

that xn ∈ (a, b), whence [xn, x] ⊆ (a, b). By the induction hypothesis, there is finite F ⊆ A
covering [0, xn]. Then F ∪ {(a, b)} covers [0, x].

(iv) Finally, assume that [0, x] has a finite subcover. Then x belongs to one interval (a, b) ∈ A.
For sufficiently small ε > 0 (e.g., ε := (b−x)/2), also x+ε ∈ (a, b), whence [x, x+ε] ⊆ (a, b),
whence a finite subcover F ⊆ A of [0, x] together with (a, b) covers [0, x+ ε].

Corollary 3.36 (Extreme Value Theorem). Every continuous f : [0, 1]→ R achieves a maximum.

Proof. Suppose not. Then [0, 1] ⊆ f−1[(−∞, sup f)] =
⋃

n f
−1[(−∞, sup f − 1/n)]; but [0, 1] is not

contained in the union of any finitely many of these preimages, by definition of sup f . Since f is
continuous, each of these preimages is itself a union of open intervals f−1[(−∞, sup f − 1/n)] =⋃

i(an,i, bn,i); so [0, 1] is not contained in a union of finitely many of the (an,i, bn,i) either.
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3.C. Well-founded relations. A general monotone set operator T : P(X) → P(X) provides a
method of “generating” or “deriving” new elements from existing ones. However, it need not provide
a meaningful notion of the “predecessors” of a given element x ∈ X, which are “required” to derive
it: indeed, note that if x ∈ T (A), then we may always enlarge A with some redundant elements,
e.g., to all of X, and still have x ∈ T (X). We next consider those special kinds of operators T
which do come equipped with a meaningful notion of “predecessor”, which admit a richer array of
inductive techniques, as well as an elegant classification theory that allows us to say precisely when
one notion of induction is “stronger” than another.

Definition 3.37. Let ≺ ⊆ X2 (“precedes”, \prec in TEX) be an arbitrary binary relation on a set.
The induced monotone set operator is

T = T≺ : P(X) −→ P(X)

A 7−→ {x ∈ X | ∀y ≺ x (y ∈ A)}
= {x ∈ X | ↓x ⊆ A}

where
↓x = ↓≺x := {y ∈ X | y ≺ x}

is the set of ≺-predecessors of x. We call A ⊆ X ≺-closed if it is T -closed, i.e., if every x ∈ X
with ↓x ⊆ A is itself in A. Thus, we also call T (A) the ≺-closure of A.

This notion captures precisely the aforementioned intuition about a monotone T : P(X)→ P(X)
giving to each x ∈ X a set of “required predecessors”. The most conceptual way to see this is via
some abstract nonsense involving general set algebra:

Exercise 3.38. Let X,Y be two sets.

(a) Recall (Exercise 2.56) that for a binary relation R ⊆ X × Y and A ⊆ X, we have the image
R[A] ⊆ Y ; and this operation preserves unions in A. Show that this yields a bijection

P(X × Y ) ≅ {F : P(X)→ P(Y ) | F preserves arbitrary
⋃
}

R 7→ (A 7→ R[A]).

(The RHS may be thought of as a different encoding of the concept of “binary relation”.)

(b) Conclude that we also have a bijection

P(X × Y ) ≅ {F : P(X)→ P(Y ) | F preserves arbitrary
⋂
}

R 7→ (A 7→ R⟨A⟩),
where R⟨A⟩ is the coimage, the de Morgan dual of the image:

R⟨A⟩ := ¬R[¬A] = {y ∈ Y | ∀x R y (x ∈ A)}.
A special case is T≺(A) defined above (when R = ≺ lives on a single set).

(c) Show that moreover,

F : P(X)→ P(Y ) preserves
⋂
⇐⇒ ∀y ∈ Y ∃ smallest A ⊆ X s.t. y ∈ F (A),

namely A = R−1[{y}] for the R corresponding to F via (b). In the case R = ≺, this is the
set of predecessors ↓x from above.

(d) Show that most of the non-standard examples of monotone T considered in the two preceding
subsections are not induced by any binary relation ≺, including most algebraic “closure”
operators (e.g., closing under vector operations in a vector space, Example 3.4), Cauchy
induction (Proposition 3.25), and real number induction (Proposition 3.33).
[Find two disjoint sets which both generate the same element.]
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To summarize, we have the following landscape of “notions of induction”:

(3.39)

all monotone set operators T

inductive T

T preserving
⋂inductive T

preserving
⋂

The T inside the round blob may equivalently be described as (i.e., are in bijective correspondence
with, by Exercise 3.38(b)) binary relations ≺, with the correspondence given by T = T≺:

≅

binary relns ≺well-founded ≺

Definition 3.40. We say that a binary relation ≺ ⊆ X2 is well-founded if the induced monotone
set operator T≺ is inductive, i.e.,

(a) We have the principle of well-founded induction for ≺: the only ≺-closed A ⊆ X is X.
(b) Equivalently, to prove ϕ(x) for all x, it suffices to prove ϕ(x) assuming ϕ(y) for all y ≺ x.
(c) Equivalently, every ∅ ̸= B ⊆ X contains a ≺-minimal x ∈ B, i.e., B ∩ ↓x = ∅.

More generally, the well-founded part of ≺ is WF(≺) = WF(X,≺) := T≺(∅).

Example 3.41. On N, the graph of the successor function

m ≺ n :⇐⇒ n = m+ 1

defines a relation whose induced T is precisely that from Example 3.2, thus whose principle of
well-founded induction is ordinary induction on N. Here is a picture of this ≺:

0 1 2 3 · · ·
Example 3.42. Still on N, ≺ := < defines a relation whose induced T is that from Example 3.3,
thus whose principle of well-founded induction is strong induction on N. Picture:

0 1 2 3 · · ·

Example 3.43. The lexicographical order <lex on N2 is well-founded, by Proposition 3.29:

...

(0, 2)
...

(0, 1) (1, 1) . .
.

(0, 0) (1, 0) (2, 0) · · ·
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As indicated by the above pictures, a common way to visualize an arbitrary binary relation R on
a set X is as arrows or “directed edges” between the elements or “vertices”. When thinking of R in
this way, we also call it a directed graph, which is formally just a synonym for binary relation.

Definition 3.44. A binary relation ≺ ⊆ X2 is:

• reflexive if x ≺ x for all x ∈ X;
• irreflexive if x ̸≺ x for all x ∈ X;
• symmetric if x ≺ y =⇒ y ≺ x for all x, y ∈ X;
• antisymmetric if x ≺ y ≺ x =⇒ x = y for all x, y ∈ X;
• transitive if x ≺ y ≺ z =⇒ x ≺ z for all x, y, z ∈ X;
• trichotomous if x ≺ y or x = y or y ≺ x for all x, y ∈ X.

Note that “irreflexive” is not the same as “not reflexive”, and “antisymmetric” is not the same as
“not symmetric”. Note also that given irreflexivity, antisymmetry is equivalent to: x ̸≺ y or y ̸≺ x for
all x, y; while given reflexivity, trichotomy is equivalent to dichotomy: x ≺ y or y ≺ x for all x, y.

• ≺ is a preorder if it is reflexive and transitive.
• ≺ is a partial order if it is an antisymmetric preorder.
• ≺ is a linear order (or total order) if it is a dichotomous partial order.
• ≺ is an equivalence relation if it is a symmetric preorder.

Proposition 3.45. A well-founded relation ≺ is irreflexive and antisymmetric. More generally,
there are no directed cycles x0 ≺ x1 ≺ · · · ≺ xn = x0 of any length n ≥ 1.

Proof. The directed cycle would be a subset with no minimal element.

Proposition 3.46. More generally, a binary relation ≺ ⊆ X2 is well-founded iff there are no infinite
descending sequences x0 ≻ x1 ≻ x2 ≻ · · · (where ≻ := ≺−1).

Proof. =⇒: Such a sequence would form a subset with no minimal element.
⇐=: Suppose ≺ is not well-founded; let C ⊆ X be nonempty with no minimal element. Pick

x0 ∈ C, then inductively, given xn ∈ C which cannot be minimal, pick xn ≻ xn+1 ∈ C.

Remark 3.47. This might seem like a more intuitive definition of well-foundedness. However,
from a foundational standpoint, the above proof is rather nontrivial: not only does it assume N,
i.e., the Axiom of Infinity 3.138, but it even uses the Axiom of Axiom 4.2 in order to pick xn+1

arbitrarily from among the potentially many predecessors of xn at each stage. (See Exercise 4.7.)
This characterization is thus best used for visual intuition only; the conceptual significance of
well-foundedness is our official definition: that we can do induction on it.

Example 3.48. A simple undirected graph, usually called simply a graph, is an irreflexive
symmetric binary relation. Given an irreflexive antisymmetric ≺, we may symmetrize it into
∼ := ≺ ∪ ≻. We may visualize this as vertices connected by unoriented edges (no arrows); the
original ≺ amounts to picking one of the two possible orientations for each edge.

A graph ∼ is acyclic if it has no cycles of ≥ 3 distinct vertices. (Of course, any edge yields a
cycle of length 2.) An acyclic graph is also called a forest. A tree is a connected acyclic graph.

Note that if ∼ is a forest which is the symmetrization of an irreflexive antisymmetric ≺, then there
are no non-vacuous instances of transitivity which hold for ≺, i.e., no x, y, z for which x ≺ y ≺ z and
also x ≺ z, or else we would have a cycle of length 3. Example 3.41 is a tree (after symmetrizing);
Examples 3.42 and 3.43 are not, being transitive. Here is another example:

· · ·

T (∅)

T2(∅)

T3(∅)

T4(∅)
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It is a bit silly to have “branches” of the tree pointing both backwards and forwards; usually,
we would pick the orientations of the edges to point towards or away from a specified “root”. For
well-founded relations, pointing towards the root is the more natural condition, due to the following:

Proposition 3.49. Let ≺ be a well-founded relation. Suppose each vertex x has at most one y ≻ x
(i.e., ≺ is the graph of a partial function). Then the symmetrization ∼ := ≺ ∪≻ is a forest.

Proof. Suppose we had an undirected cycle x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn = x0 of n ≥ 3 distinct vertices.
Then each ∼ is either ≺ or ≻. They cannot all be ≺ or ≻, since that would mean a directed
cycle, contradicting Proposition 3.45. Suppose WLOG x0 ≻ x1, and let 1 ≤ i < n be least so that
xi ≺ xi+1; then xi−1 ≻ xi ≺ xi+1, so xi has two distinct successors.

Call ≺ a well-founded forest if the above conditions hold. Note that there is little risk of
confusion with undirected forests, since well-founded implies antisymmetric by Proposition 3.45. If
a vertex x has no successor, it is a root vertex (of its connected component; some components
may have no root vertex, in which case they are instead “rooted at infinity”). For example, here is
a well-founded forest with three connected components, one of them “rooted at infinity”:

...

· · ·

T (∅)

T2(∅)

T3(∅)
T4(∅)

T∞+1(∅)\T∞(∅)∋

Well-founded forests are nice examples of induction, because we can draw pictures of them. But
they are also quite general: we will see below (TODO) that every well-founded relation can be
“simulated” by a forest.

Example 3.50. Closing under algebraic operations on a set X, as in Example 3.4, does not typically
correspond to a relation ≺, by Exercise 3.38. For example, there is no unique “predecessor step” in
generating 30 = 2 · 3 · 5 from the prime numbers under binary multiplication.

However, if the set X consists of formal symbolic expressions11 built from the operations fi (in
the notation of Example 3.4), then T does come from a well-founded ≺, namely

s ≺ t :⇐⇒ s is a immediate subexpression of t = fi(. . . , s, . . . ) for some fi.

For example, if X consists of all expressions built from the single binary operation +, starting from
the symbols 0, 1, 2, then ≺ is given by a directed graph that looks like

1 + (1 + 2) · · ·

· · ·

(1 + 1) + 2 · · ·

· · ·

1 + 2

1 + 1

1

· · ·

2

0 · · ·

11that is, terms in first-order logic
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A key feature of notions of induction given by well-founded relations is that we may not only
prove statements ϕ(x) by induction on x, but also define objects f(x) inductively:12

Theorem 3.51 (principle of well-founded inductive definition). Let ≺ be a well-founded relation
on X, let (Yx)x∈X be a family of sets, and let(

Fx :
∏
z≺x

Yz → Yx

)
x∈X
∈
∏
x∈X

Y
∏

z≺x Yz
x .

Then there is a unique f ∈
∏

x∈X Yx such that for each x ∈ X,

f(x) = Fx((f(z))z≺x).

In other words, “to define a family (f(x) ∈ Yx)x∈X , it suffices for each x to define f(x) ∈ Yx
assuming given f(z) ∈ Yz for each z ≺ x”; this definition of f(x) given (f(z))z≺x is specified by Fx.

Proof. Uniqueness follows easily from well-founded induction: if f, g ∈
∏

x∈X Yx are two such
functions, and f(z) = g(z) for all z ≺ x, then

f(x) = Fx((f(z))z≺x) = Fx((g(z))z≺x) = g(x).

We now prove existence. We identify f with its graph, which is to be a set of pairs

f ⊆
⋃

x∈X({x} × Yx)

The requirement on f says that for each x ∈ X and y ∈ Yx,

(x, y) ∈ f ⇐⇒ ∃(yz)z≺x ∈
∏

z≺x Yz (y = Fx((yz)z≺x) and ∀z ≺ x ((z, yz) ∈ f)).

By the Knaster–Tarski Theorem 3.6, there is such a set of pairs f . We prove that f is a function,
i.e., ∀x ∈ X ∃!y ∈ Yx ((x, y) ∈ f), by ≺-induction on x. Assume ∀z ≺ x ∃!yz Yz ((z, yz) ∈ f). Then
by the above ⇐⇒, the unique y such that (x, y) ∈ f is y = Fx((yz)z≺x).

Example 3.52. ! : N→ N (factorial), i.e., (n!)n∈N ∈
∏

n∈NN, is defined inductively as follows:

0! := 1,

(n+ 1)! := (n+ 1) · n!.

In the above formalism: take ≺ to be the successor graph from Example 3.41, X := Yn := N, and

F0 :
∏

m∈↓0N = N∅ −→ N
∅ 7−→ 1,

Fn+1 :
∏

m∈↓(n+1)N = N{n} −→ N
(y) 7−→ (n+ 1) · y.

Example 3.53. The Fibonacci sequence (f(n))n∈N ∈
∏

n∈NN is defined via strong induction:

f(0) := 0,

f(1) := 1,

f(n) := f(n− 1) + f(n− 2) for n ≥ 2.

In the above formalism: take ≺ := <, X := Yn := N, and

Fn :
∏

m<nN = Nn −→ N

(y0, . . . , yn−1) 7−→


0 if n = 0,

1 if n = 1,

yn−1 + yn−2 if n ≥ 2.

12Often, set theorists will insist that the correct terminology for “inductive definition” is recursion.
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Example 3.54. Recall the Ackermann function A : N2 → N defined via an algorithm as in
Example 3.30 and Remark 3.32. We may also define it directly, via lexicographical induction:

A(0, y) := y + 1,

A(x+ 1, 0) := A(x, 1),

A(x+ 1, y + 1) := A(x,A(x+ 1, y)).

Note that Example 3.30 is the algorithm for expanding this definition:

A(1, 2) = A(0, A(1, 1))

= A(0, A(0, A(1, 0)))

= A(0, A(0, A(0, 1)))

= A(0, A(0, 2))

= A(0, 3)

= 4;

now erase the A’s and nested parentheses to recover the computation from Example 3.30.
In the formalism of Theorem 3.51: we use the lexicographical ordering <lex on X := N2 from

Proposition 3.29, which says precisely that <lex is well-founded; Y(x,y) := N; and

F(0,y) :
∏

(u,v)<lex(0,y)
N = N{(0,0),...,(0,y−1)} −→ N

a⃗ = (a(0,0), . . . , a(0,y−1)) 7−→ y + 1,

F(x+1,0) :
∏

(u,v)<lex(x+1,0)N = N(x+1)×N −→ N
a⃗ = (a(u,v))u≤x,v∈N 7−→ a(x,1),

F(x+1,y+1) :
∏

(u,v)<lex(x+1,y+1)N = N((n+1)×N)∪{(x+1,0),...,(x+1,y)} −→ N
a⃗ 7−→ ax,ax+1,y .

Remark 3.55. In many examples, such as those above, the sets Yx in Theorem 3.51 are the same.
In fact, the general case where the Yx’s vary can be reduced to this simpler case, since we may
take Y :=

⋃
x∈X Yx, define f : X → Y inductively, and then prove by induction that in fact, each

f(x) ∈ Yx. On the other hand, the general form of Theorem 3.51 has the advantage that we may

Exercise 3.56. Deduce the principle of induction (i.e., that ≺ is well-founded) from the principle
of inductive definition (Theorem 3.51).

Example 3.57. To see why the principle of inductive definition, unlike the principle of induction,
only works for a well-founded relation ≺ rather than a general monotone T : P(X)→ P(X): take

T : P(N) −→ P(N)

A 7−→ {0, 1, 2} ∪ {x+ y | x, y ∈ A}.

This is clearly inductive. If we try to define a function f : N→ N T -inductively via

f(0) := f(1) := f(2) := 2,

f(x+ y) := f(x)f(y),

we get a contradiction f(4) = f(2 + 2) = f(2)f(2) = 4 and f(4) = f(1 + 2 + 1) = f(1)f(2)f(1) = 8.
On the other hand, if X consists of formal symbolic expressions built from 0, 1, 2,+ as in

Example 3.50, then such a well-founded inductive definition would be allowed: we would get
f(2 + 2) = 4 and f((1 + 2) + 1) = 8, but these two expressions 2 + 2 and (1 + 2) + 1 are different.
We can use this for example to define the evaluation of each such expression e.
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3.D. Simulations. Our goal for the next few subsections is, roughly speaking, to “compare” and
“classify” different notions of induction. We will focus on well-founded relations, although some
things can be generalized to monotone operators T , as indicated in Exercises.

Example 3.58. Ordinary induction on N can clearly be “reduced” to strong induction.
What does this mean, precisely? The successor relation ≺ on N (Example 3.41) is a subgraph

of the < relation (Example 3.42), i.e., the predecessors ↓≺x of the former are a subset of the
precedessors ↓<x of the latter, for any x ∈ N. Thus, if we know strong induction, then we can easily
deduce ordinary induction, whose induction hypotheses are a subset of those for strong induction.

Exercise 3.59. Show that in general, if ≺1 ⊆ ≺2 ⊆ X2 and ≺2 is well-founded, then so is ≺1.

Example 3.60. Consider the following induction principle for N2: for A ⊆ N2, if

• (0, 0) ∈ A,
• (0, y) ∈ A =⇒ (0, y + 1) ∈ A,
• (x, 0) ∈ A =⇒ (x+ 1, 0) ∈ A,
• (x, y + 1), (x+ 1, y) ∈ A =⇒ (x+ 1, y + 1) ∈ A,

then A = N2. This is induction for the following well-founded graph on the left:

(0, 0)

(0, 1) (1, 0)

(0, 2) (2, 0)

...

f−→

0

1

2

3

...

We may prove this induction principle by proving that (x, y) ∈ A for all (x, y) ∈ N2, by ordinary
induction on x+ y. In other words, we have the addition function f : N2 → N which “reduces” this
induction principle to ordinary induction for N.

Definition 3.61. For two sets equipped with binary relations (X,≺X) and (Y,≺Y ), a function
f : X → Y is a homomorphism (between the relations) if for all x, x′ ∈ X,

x′ ≺X x =⇒ f(x′) ≺Y f(x).

Proposition 3.62. For a homomorphism f as above, if ≺Y is well-founded, then so is ≺X .

Proof idea. If ≺X is not well-founded, then (by Proposition 3.46) there is a descending sequence
x0 ≻X x1 ≻X · · · , whence f(x0) ≻Y f(x1) ≻ · · · , whence ≺Y is not well-founded.

However, we don’t like this “proof” very much, for it uses not only N but also the Axiom of
Choice (cf. Remark 3.47). The following proof is similar in spirit, being based on the “contrapositive”
form of the principle of induction. Below, we give another “forward” proof, generalizing the usual
way that principles of induction may be used to prove each other (such as in Example 3.60).

Proof 1. If ≺X is not well-founded, then there is ∅ ̸= B ⊆ X with no ≺X -minimal element, whence
∅ ̸= f [B] ⊆ Y has no ≺Y -minimal element, since for every f(x) ∈ f [B] where x ∈ B, there is
x′ ≺X x, whence f(x′) ≺Y f(x).

Proof 2. Let A ⊆ X be ≺X -closed; we show that ∀x ∈ X (x ∈ A), by ≺Y -induction on f(x). That
is, we show that ∀y ∈ Y ∀x ∈ f−1(y) (x ∈ A), by ≺Y -induction on y. Suppose (IH) this holds for all
y′ ≺Y y. Then for all x ∈ f−1(y), for all x′ ≺X x, we have f(x′) ≺Y f(x) = y, whence by the IH,
x′ ∈ A. Thus since A is ≺X -closed, x ∈ A.
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Example 3.63. If ≺ is a well-founded relation on X, then any subrelation of ≺ is also well-founded
(because idX is a homomorphism). This covers Exercise 3.59.

Example 3.64. If ≺ is a well-founded relation on X, then for any Y ⊆ X, the restriction
≺|Y := (≺) ∩ Y 2 is well-founded on Y (because the inclusion Y ↪→ X is a homomorphism).

Example 3.65. For sets with relations X = (X,≺X) and Y = (Y,≺Y ), an isomorphism f : X ≅ Y
is a bijection such that both f, f−1 are homomorphisms, i.e.,

x′ ≺X x ⇐⇒ f(x′) ≺Y f(x).

As usual in mathematics, when two structures are called “isomorphic” (in whatever sense appropriate
to that context), then they should be considered “the same structure”, possibly with elements
labeled differently, but sharing all of the same “structural” properties. For example,

(N, <) ≅ (−N, >) where −N := {−n | n ∈ N}.
If f : X ≅ Y is an isomorphism, then in particular, ≺X is well-founded iff ≺Y is.

In spite of these examples, however, homomorphisms are not the most natural or general way of
comparing notions of induction:

Example 3.66. Strong induction on N can also be “reduced” to ordinary induction, as follows.
Suppose A ⊆ N satisfies the hypothesis of the principle of strong induction:

(∗) ∀x ∈ N ((∀y < x, y ∈ A) =⇒ x ∈ A).

We prove that A = N, by proving by ordinary induction that for each x ∈ N, every y ≤ x is in A.

• For x = 0, the only y ≤ x is x = 0, which is in A by (∗) applied to x = 0.
• Suppose (IH) every y ≤ x is in A; we prove that every y ≤ x+ 1 is in A. The only new y to

consider is y = x+ 1. By the IH, every y < x+ 1 is in A. Thus by (∗), x+ 1 ∈ A.

Definition 3.67. For two sets equipped with binary relations (X,≺X) and (Y,≺Y ), a relation
R ⊆ X × Y is a simulation (of ≺X in ≺Y ) if for all x, x′ ∈ X and y ∈ Y ,

x′ ≺X x R y =⇒ ∃y′ ∈ Y (x′ R y′ ≺Y y),

i.e.,

x R y =⇒ ∀x′ ≺X x, ∃y′ ≺Y y (x′ R y′) ⇐⇒: x Tsim(R) y,

R ◦ (≺X) ⊆ (≺Y ) ◦R.
We use wavy arrows to denote R:

x′ x

y′ y

R

≺X

R

≺Y

Proposition 3.68. For a simulation R with dom(R) = X, if ≺Y is well-founded, then so is ≺X .
More generally, R−1[WF(≺Y )] ⊆WF(≺X).

The following proof idea, using N and the Axiom of Choice, explains the name “simulation”: we
are “simulating” the “history” of an element x ∈ X in Y .

· · · x2 x1 x0

· · · y2 y1 y0

Exercise 3.69. Give proofs using (a) every nonempty set has a minimal element; (b) induction.
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Example 3.70. When R above is the graph of a function f , then the definition of simulation says
precisely that f is a homomorphism (since y = f(x) and y′ = f(x′)).

Exercise 3.71.

(a) Show that a binary relation R ⊆ X × Y is a simulation iff its domain is a ≺X -downward-
closed subset of X, i.e., x′ ≺ x ∈ dom(R) =⇒ x′ ∈ dom(R), and R ⊆ dom(R) × Y is a
simulation (of the restriction of ≺X to dom(R) in ≺Y ).

(b) Conclude that a partial function f is a simulation iff .

Example 3.72. ≤ ⊆ N× N is a simulation of < in ≺:

x′ < x ≤ y =⇒ x′ ≤ y′ := y − 1 ≺ y.
Proof (b) of Exercise 3.69 should recover the proof of strong induction in Example 3.66 in this case.

Example 3.73. The addition map f : N2 → N from Example 3.60 is a simulation from the “grid”
graph ≺N2 on the left to the usual successor graph ≺N (since it is a homomorphism), and its inverse is
also a simulation, despite not being a function. Indeed, if m ≺N n f

−1 (x, y), i.e., m+ 1 = n = x+ y,
WLOG with x > 0, then m f−1 (x− 1, y) ≺N2 (x, y).

Definition 3.74. R is a cosimulation if R−1 is a simulation, and a bisimulation if it is both a
simulation and a cosimulation, i.e.,

x R y =⇒ ∀x′ ≺ x ∃y′ ≺ y (x′ R y′) and ∀y′ ≺ y ∃x′ ≺ x (x′ R y′) ⇐⇒: x Tbisim(R) y.

This intuitively means that x and y have “histories which look the same”.

Corollary 3.75 (of Proposition 3.68). If f : X ↠ Y is a surjective cosimulation, and ≺X is
well-founded, then so is ≺Y . More generally, f [WF(≺X)] ⊆WF(≺Y ).

Example 3.76 (cf. Example 3.70). A bijection is a bisimulation iff it is an isomorphism.

Proposition 3.77. Let (X,≺X), (Y,≺Y ), (Z,≺Z) be three sets with binary relations.

(a) idX : X → X is a (bi)simulation.
(b) If R ⊆ X × Y and S ⊆ Y × Z are (bi)simulations, then so is S ◦R ⊆ X × Z.
(c) If R ⊆ X × Y is a bisimulation, then so is R−1 ⊆ Y ×X.

Proof. (a) because it is an isomorphism; (c) is obvious.
(b) S ◦R ◦ (≺X) ⊆ S ◦ (≺Y ) ◦R ⊆ (≺Z) ◦ S ◦R; similarly for their inverses.

Exercise 3.78. Note that proof 2 of Proposition 3.62 uses the coimage (Exercise 3.38)

f⟨A⟩ = {y ∈ Y | ∀x ∈ f−1(y) (x ∈ A)};
similarly for Exercise 3.69(b). Based on this observation, generalize the concept of simulation to
monotone set operators as follows.

Let X,Y be sets with monotone set operators TX , TY respectively, and let R ⊆ X × Y .

(a) Show that the following are equivalent:
(i) For all B ⊆ Y , we have R−1[TY (B)] ⊆ TX(R−1[B]).

(ii) For all A ⊆ X, we have TY (R⟨A⟩) ⊆ R⟨TX(A)⟩.
(iii) For all A ⊆ X, we have R[SX(A)] ⊆ SY (R[A]), where

SX(A) := X \ TX(X \A)

is the de Morgan dual of TX (we can think of SX(A) as those x which “depend on A”,
i.e., for which A is necessary, rather than sufficient, to derive x); similarly for SY .

(b) Verify that these conditions are equivalent to R being a simulation, when TX = T≺X and
TY = T≺Y for relations ≺X ⊆ X2 and ≺Y ⊆ Y 2.

(c) Show that if these hold, then they continue to hold when TX , TY are replaced with TX , TY .
(d) Conclude that R−1[TY (∅)] ⊆ TX(∅). Thus, if TY is inductive, then so is TX .
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3.E. Simulability and bisimilarity. Note that Definitions 3.67 of simulation and 3.74 of bisim-
ulation are both of the form “R ⊆ T (R)”, for suitable monotone set operators T = Tsim, Tbisim :
P(X × Y )→ P(X × Y ) as indicated in those definitions. In other words, they amount to saying
that R is “T -open”, in the sense of the dual Knaster–Tarski Theorem 3.20. Consequently,

Definition 3.79. For sets with binary relations (X,≺X), (Y,≺Y ), by dual Knaster–Tarski, there is
a largest simulation and bisimulation between them, denoted respectively

(≲) = (≲X,Y ) := T ◦
sim(X × Y ) ⊆ X × Y,

(≡) = (≡X,Y ) := T ◦
bisim(X × Y ) ⊆ X × Y.

(These depend on ≺X ,≺Y , even though we don’t write ≺X ,≺Y in the notation.) If x ≲ y, we say x
is simulable by y or that y can simulate x; if x ≡ y, we say x, y are bisimilar. We also write

x ≂ y :⇐⇒ x ≲ y ≲ x,

and call x, y mutually simulable if this holds.

By virtue of the definitions of ≲,≡ as the largest T -open sets for some T , we have

x ≲ y ⇐⇒ x Tsim(≲) y ⇐⇒ ∀x′ ≺ x ∃y′ ≺ y (x′ ≲ y′)(3.80)

⇐⇒ x R y for some simulation R,(3.81)

x ≡ y ⇐⇒ x Tbisim(≡) y ⇐⇒ ∀x′ ≺ x ∃y′ ≺ y (x′ ≡ y′) and ∀y′ ≺ y ∃x′ ≺ x (x′ ≡ y′)(3.82)

⇐⇒ x R y for some bisimulation R.(3.83)

Corollary 3.84 (of Proposition 3.77). Let (X,≺X), (Y,≺Y ), (Z,≺Z) be sets with binary relations.

(a) x ≡ x for any x ∈ X.
(b) x ≡ y ≡ z =⇒ x ≡ z, and x ≲ y ≲ z =⇒ x ≲ z, for x ∈ X, y ∈ Y , z ∈ Z.
(c) x ≡ y =⇒ y ≡ x for x ∈ X, y ∈ Y .

In other words, ≲ is a preorder, while ≡ is an equivalence relation, between all elements of all sets
(X,≺) equipped with a relation (formally, on the disjoint union

⊔
(X,≺)X).

Proof. For (b): (≡Y,Z) ◦ (≡X,Y ) ⊆ X × Z is a bisimulation by Proposition 3.77(b), hence contained
in (≡X,Z); similarly for ≲. The other two parts follow similarly.

Corollary 3.85. If x ≡ y, then x ≂ y.

Proof. ≡ is a simulation, hence contained in ≲; it follows that also (≡) = (≡−1) ⊆ (≲−1).

Remark 3.86. Simulation is a generic class of relations: there are many examples of simulations.
Among them, there is a specific one, called simulability ≲.

Starting from the generic concept of simulation, we may symmetrize it to obtain the generic
concept of bisimulation, of which there are again many examples; among these, we have the specific
example of bisimilarity ≡. Or, we may symmetrize the specific simulation of simulability ≲, to
obtain mutual simulability ≂. These two equivalence relations are not the same! The preceding
result shows that ≡ implies ≂, but the converse may fail; see Examples 3.89 and 3.90. In the
following diagram, the arrows denote informal derivation of one concept from another:

simulation R simulability ≲

bisimulation R bisimilarity ≡
mutual simulability ≂

⊆

generic specific

symmetric
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Example 3.87. If x ∈ X has no predecessors, then it is simulable by all y ∈ Y , while it can only
simulate y ∈ Y which also has no predecessors, immediately by (3.80).

Thus, if x ≂ y, then x has no predecessors iff y does. Conversely, if x, y both have no predecessors,
then clearly x ≡ y (however, if both have predecessors, this may or may not hold).

Example 3.88. If y ∈ Y \WF(≺Y ), then x ≲ y for all x ∈ X. Indeed, since WF(≺Y ) is ≺Y -closed
by definition, (for any x′ ≺ x) there is some y′ ≺ y also in Y \WF(≺Y ); thus X × (Y \WF(≺Y )) is
a simulation, hence contained in ≲.

Thus, elements not in the well-founded part are equivalent according to ≂ (they may or may not
be equivalent according to ≡; see the following example), and “above” all other elements according
to ≲. The generic picture of ≲ ⊆ X × Y , between two sets X,Y with relations ≺X ,≺Y (drawn here
as if they were the < relation on the R or N line), looks like:

WF(≺X) X \WF(≺X)
X

WF(≺Y )

Y \WF(≺Y )

Y

≲

Example 3.89. Let X = {a} and Y = {b, c} be equipped with the following ill-founded graphs:

a c

b

We may determine the ≲ (namely ≲X,X ,≲X,Y ,≲Y,X ,≲Y,Y ), ≂, and ≡ relations between all pairs of
elements of either of these sets (a ✓ means row ≲ column, etc.):

≲ a b c
a ✓ X ✓
b ✓ ✓ ✓
c ✓ X ✓

≂ a b c
a ✓ X ✓
b X ✓ X

c ✓ X ✓

≡ a b c
a ✓ X X

b X ✓ X

c X X ✓

For ≲, we know the first and third columns are ✓ while the second column is X except for the
diagonal entry, by the preceding example, since b is in the well-founded part while a, c are not.
Intersecting this matrix with its transpose yields the matrix for ≂. For ≡, we know it must be
contained in ≂ (Corollary 3.85), and it is still reflexive, so the only possibility is that a, c are not
bisimilar (even though they are mutually simulable); this is indeed the case, since the predecessor
b ≺ c is not bisimilar to any predecessor of a (the only such predecessor being a itself which we’ve
already determined is not ≂ b).

Example 3.90. Let X = N equipped with the successor relation x ≺X y :⇐⇒ x + 1 = y,
and Y = N equipped with the usual order relation ≺Y := <. We’ve already seen that = is a
homomorphism from X to Y (Example 3.58), while ≤ is a simulation from Y to X (Example 3.72).
In fact it is also a simulation from X to Y , or from each of these sets to itself. Indeed, as with
any relation, ≺X is trivially a simulation from itself to itself; thus ≲X,X ⊆ X ×X is a preorder
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containing ≺X , hence contains the preorder generated by ≺X , which is easily seen to be ≤. It follows
that ≲X,Y ⊆ X × Y contains = and is closed under composition with ≲X,X = ≤; said composition
is easily seen to be ≤. And similarly, ≲Y,Y ⊇ ≲X,Y ◦≲Y,X ⊇ ≤ ◦ ≤ = ≤.

We claim that in fact, all four of these ≲ relations are equal to ≤. To see this for ≲X,Y , we
can show by induction that x ≲X,Y y =⇒ x ≤ y, by induction on x. For x = 0 the conclusion
is trivially true. Now let x be such that for all y, we have x ≲X,Y y =⇒ x ≤ y, and suppose
x+ 1 ≲X,Y y. Then x ≺X x+ 1 ≲X,Y y, so there exists y′ ≺Y y, i.e., y′ < y, such that x ≲X,Y y′,
which by the IH means x ≤ y′ < y, whence x + 1 ≤ y. This proves it for ≲X,Y ; the other three
relations ≲X,X ,≲Y,X ,≲Y,Y are easier, since we still have x ≺ x+ 1 according to the weaker ≺ on
the domain, while the stronger ≺ on the codomain still yields y′ < y.

...

3

2

1

0

...

3

2

1

0

X Y

In particular, we see that the ≂ relation between X,Y (or between X,X, etc.) is equality. The ≡
relation between X and itself, or between Y and itself, is thus also equality, since it must be reflexive.
But ≡X,Y is smaller: at the beginning, we do have 0 ≡X,Y 0, since 0 is minimal in both X,Y ; and
thus 1 ≡X,Y 1, since every x′ ≺X 1 (namely x′ = 0) is bisimilar to some y′ ≺Y 1 (namely y′ = 0),
and similarly vice-versa. But 2 ̸≡X,Y 2, since 0 ≺Y 2 is not bisimilar to the unique x′ = 1 ≺X 2.

These examples demonstrate that in the well-founded part,13 we may inductively determine
whether ≲ or ≡ holds by “checking all predecessors”. This is made precise by the following:

Proposition 3.91. Let X,Y be sets equipped with binary relations ≺X ,≺Y , at least one of which
is well-founded. Then ≲X,Y ,≡X,Y are the unique fixed points of Tsim, Tbisim respectively, i.e., the
unique binary relations between X,Y obeying (3.80), (3.82). Equivalently, they are also the smallest
Tsim, Tbisim-closed relations.

Proof. If say ≺X is well-founded, then note that (3.80) defines the truth value of x ≲ y over all y,
by well-founded induction on x.

More formally, via the canonical bijection P(X × Y ) ≅ 2X×Y ≅ (2Y )X ≅ P(Y )X (Exercise 2.82),
≲ corresponds to a function f : X → P(Y ), taking X ∋ x 7→ {y ∈ Y | x ≲ y}; now (3.80) says

f(x) = {y ∈ Y | ∀x′ ≺ x ∃y′ ≺ y (y′ ∈ f(x′))},
which is a well-founded inductive definition of f (Theorem 3.51) and hence ≲. Similarly for ≡, or if
≺Y is well-founded.

The assertion that Tsim(∅) = ≲X,Y := T ◦
sim(X × Y ) is equivalent to ≲X,Y being the unique

Tsim-fixed point, because Tsim(∅) is also a Tsim-fixed point, by the Knaster–Tarski Theorem 3.6;
similarly for Tbisim(∅).

Exercise 3.92. Show that in general, without the assumption that either ≺X or ≺Y is well-founded,
the least fixed points Tsim(∅), Tbisim(∅) ⊆ X × Y are the same as ≲X,Y ,≡X,Y but with all of
(X \WF(≺X))× (Y \WF(≺Y )) excluded (recall Example 3.88).

13In the ill-founded part, the behavior of ≲ is completely determined by Example 3.88, while ≡ may be more
complicated; see Example 3.89 and Remark 3.102.
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3.F. The Mostowski collapse and Axiom of Foundation. For the bisimilarity relation ≡,
there is an even better way to check when it holds between two well-founded relations. Instead of
checking inductively whether two elements x, y “have the same history”, according to the definition
of ≡, we may compute a set ξ(x) which records “the history” of a single element x.

In order to motivate this, note that (by Corollary 3.84) ≡ is an equivalence relation (on
⊔

(X,≺)X).

Abstractly, any equivalence relation is given by equality of some value ξ(x) assigned to each x; this
is the point of the quotient set construction. The usual way of constructing quotients is to take
equivalence classes ξ(x) := [x], which for ≡ would be proper classes (since ≡ relates elements of all
sets equipped with a binary relation). But there is another way: we want

ξ(x) = ξ(y)
?⇐⇒ x ≡ y(3.93)

⇐⇒ ∀x′ ≺ x ∃y′ ≺ y (x′ ≡ y′) and ∀y′ ≺ y ∃x′ ≺ x (x′ ≡ y′)
(by IH) ⇐⇒ ∀x′ ≺ x ∃y′ ≺ y (ξ(x′) = ξ(y′)) and ∀y′ ≺ y ∃x′ ≺ x (ξ(x′) ≡ ξ(y′))

⇐⇒ {ξ(x′) | x′ ≺ x} = {ξ(y′) | y′ ≺ y} by Extensionality 2.1,

which will hold if ξ satisfies
ξ(x) = {ξ(x′) | x′ ≺ x}.

Definition 3.94. Let ≺ ⊆ X2 be a well-founded relation. The Mostowski collapse (or exten-
sional collapse) of (X,≺) is the function ξ on X defined inductively by the above equation.

Remark 3.95. There is a subtle technical problem with this definition: it is not valid according
the principle of well-founded inductive definition as we have proved in Theorem 3.51! There, we
assumed given codomain sets Yx for the function we’re defining (possibly varying with x); whereas
ξ builds sets of arbitrary complexity from scratch in the universe, with no connection to the set X
we start with. The codomains were essential in the proof of Theorem 3.51 using the impredicative
Knaster–Tarski Theorem 3.6, which had to intersect over arbitrary subsets of the given sets.

Later in Theorem 3.167, we will give a more powerful version of Knaster–Tarski that allows
precisely this kind of “unbounded” construction from scratch in the universe. Until then, statements
that mention ξ should be understood as “provided the ξ function exists for the given (X,≺)”.

Proposition 3.96. ξ : (X,≺)→ (V,∈) is a bisimulation.

Proof. This is a restatement of the definition of ξ:

• If x′ ≺ x ξ y, i.e., ξ(x) = y, then ξ(x′) =: y′ ∈ y.
• If ξ(x) = y ∋ y′, then y′ = ξ(x′) for some x′ ≺ x.

We thus have a single “ultimate” notion of induction, namely the universe V equipped with ∈,
which contains exactly one set in each bisimilarity class, and ξ picks out this set:

...
...

...

∅

{∅}

{{∅}} {∅, {∅}}

...

≺X ≺Y ≺Z
∈

≡-class

ξ

ξ

ξ

ξ
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Do all sets represent notions of induction, i.e., is the universe itself well-founded?

Axiom of Foundation/Regularity 3.97. For any set X, ∈X ⊆ X2 is well-founded.
That is, for any A ⊆ X, if every x ∈ X with x ⊆ A is in A, then A = X.
Equivalently, every ∅ ̸= B (⊆ X) contains a ∈-minimal x, i.e., x ∩B = ∅.

Example 3.98. Foundation rules out the existence of a set x ∈ x. To see this, we cannot simply
take B above to be x, since x could contain a different element disjoint from x, e.g., if x = {∅, x}.
Instead, we can take B := {x}.

Example 3.99. Similarly, Foundation rules out x ∈ y ∈ x (take B = {x, y}).

Example 3.100. Similarly, Foundation rules out a sequence (x0, x1, . . . ) such that x0 ∋ x1 ∋ · · · ;
and in fact, assuming the Axiom of Choice, this is equivalent to Foundation (cf. Proposition 3.46).

Remark 3.101. The above means only what it says: Foundation rules out such a sequence
(x0, x1, . . . ) existing in the universe. There could still be a set x0, and a set x1, and a set x2, etc.,
such that x0 ∋ x1 ∋ · · · ; but the entire sequence (x0, x1, . . . ) cannot exist as a set in the universe.
That is, Foundation in some sense only says that “the universe thinks it’s well-founded”, not that
“the universe is actually well-founded”. It turns out that the latter property is not expressible via
any axiom of set theory that is “finitely expressible” (hence usable by humans)!14

Remark 3.102. People have occasionally considered alternatives to the Axiom of Foundation. One
example is Aczel’s Anti-Foundation Axiom, which says “every binary relation ≺ ⊆ X2 has a unique
Mostowski collapse function ξ”. For instance, this implies “there is a unique x such that x = {x}”
(called a Quine atom), given by Mostowski collapsing the loop on a single vertex !

3.G. Transitivity and rank. We begin this subsection by tying up a loose end from the last.
Under the Axiom of Foundation, arbitrary sets are precisely the Mostowski collapses ξ(x) of elements
of sets with well-founded relations (X,≺). The entire set X is thus bisimilar to the image ξ[X]
(with ∈); but this image is no longer an arbitrary set: it must be downward-closed (Exercise 3.71).

Definition 3.103. Let ≺ ⊆ X2 be a binary relation. We say that x ∈ X is ≺-transitive if

↓x is ≺-downward-closed,

i.e., ∀z ≺ y ≺ x (z ≺ x),

i.e., ∀y ≺ x (↓y ⊆ ↓x).

Thus, ≺ is a transitive relation iff every x ∈ X is a ≺-transitive element.
We say that a set X is transitive if it is ∈-transitive, i.e., the following equivalent conditions:

X is ∈-downward-closed,

∀y ∈ x ∈ X (y ∈ X),

∀x ∈ X (x ⊆ X),

X ⊆ P(X).

Lemma 3.104. Let (X,≺X), (Y,≺Y ) be sets with binary relations, f : X → Y a function which is
a bisimulation. If x ∈ X is transitive, then so is f(x) ∈ Y .

Proof. Let y′′ ≺ y′ ≺ f(x). Since f−1 is a simulation, there exist x′′ ≺ x′ ≺ x such that f(x′) = y′

and f(x′′) = y′′. Since x is transitive, x′′ ≺ x. Since f is a homomorphism, y′′ = f(x′′) ≺ f(x).

14Using the compactness theorem in first-order logic, given any “actually well-founded” universe V of set theory,
we can produce a bigger universe V ′ with a sequence x0 ∋ x1 ∋ · · · which obeys exactly the same first-order axioms as
V . Such “non-standard” models of set theory have interesting applications in analysis, topology, and combinatorics,
where they can be used to make rigorous sense of “infinities/infinitesimals” like in calculus. See Exercise 4.70.
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Proposition 3.105. For a set X, the following are equivalent:

(i) X is a transitive set and ∈X ⊆ X2 is well-founded (i.e., Foundation holds for X).
(ii) ∈X is well-founded and ξ∈X = idX .

(iii) ∈X is well-founded and X = ξ∈[X].
(iv) X = ξ≺[Y ] for some well-founded relation ≺ ⊆ Y 2 on some set Y .
(v) X = ξ≺(y) for some well-founded relation ≺ ⊆ Y 2 and ≺-transitive element y ∈ Y .

Proof. (i) =⇒ (ii): Note that idX obeys the inductive 3.94 of ξ.
(ii) =⇒ (iii) =⇒ (iv) is obvious.
(iv) =⇒ (v): Let y be a new element not in Y ,15 and put z ≺ y for all z ∈ Y ; then ξ[Y ] = ξ(y).
(v) =⇒ (i) by the preceding lemma.

We now turn to classifying well-founded relations up to simulability ≲, rather than bisimilarity.
It turns out that transitivity plays a key role here. A paradigmatic example is ordinary versus
strong induction on N, which are mutually simulable by Examples 3.58 and 3.72; note that the
latter relation (<) is the transitive closure of the former (≺). In general, we will show that

“simulation = bisimulation + transitive closure”.

Definition 3.106. A binary relation is a strict partial order if it is irreflexive, transitive, and
antisymmetric, and a (reflexive) partial order if it is reflexive, transitive and antisymmetric
(Definition 3.44). It is easily seen that for any set X, we have a bijection

{strict partial orders < ⊆ X2} ≅ {(reflexive) partial orders ≤ ⊆ X2}
< 7→ < ∪ (=X)

≤ \ (=X)←[ ≤.
When we have a < or ≤, by default we always use the other symbol to denote its (pre)image under
this bijection. We will simetimes also loosely refer to < as a “partial order”.

A partial well-order is a well-founded strict partial order, or equivalently by Proposition 3.45,
just a well-founded transitive relation, typically denoted <.

A well-order is a well-founded strict linear order, i.e., a partial well-order which furthermore
obeys trichotomy (Definition 3.44).

Exercise 3.107. Show that a well-founded relation obeying trichotomy is automatically transitive.

Definition 3.108. The transitive closure of an arbitrary binary relation ≺ ⊆ X2 is the smallest
transitive relation containing it (which exists by Knaster–Tarski; cf. Example 3.5).

Example 3.109. < is a well-order on N, and is the transitive closure of x ≺ y :⇐⇒ x+ 1 = y.

Example 3.110. <lex is a well-order on N2 (well-foundedness is by Proposition 3.29), which is
much “longer” than <N:

(0,0) (0,1)(0,2) (2,0) (2,1)(2,2)
· · ·

(1,0) (1,1)(1,2)

Example 3.111. The transitive closure of the “grid” in Example 3.60 is the partial well-order

(a, b) < (c, d) :⇐⇒ a ≤ c and b ≤ d and (a < c or b < d)

(which is well-founded again because addition h : N2 → N is a homomorphism, now to <).

Exercise 3.112. Assuming ordinary induction on N, show that the transitive closure of ≺ is

x < y :⇐⇒ ∃n ≥ 1 ∃x = x0 ≺ x1 ≺ · · · ≺ xn−1 ≺ xn = y.

15Under Foundation, we may take y := Y ; regardless, Russell’s paradox says that y := {z ∈ Y | z ̸∈ z} works.
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Proposition 3.113. Let ≺ ⊆ X2 be a binary relation, < be its transitive closure. Then for each
z ∈ X, ↓<z is the ≺-downward-closure of ↓≺z. That is, < is the smallest relation ⊇ ≺ such that

x < y ≺ z =⇒ x < z,(∗)
i.e., ≺ ◦< ⊆ <.

Note that by definition, < is the smallest relation ⊇ ≺ such that < ◦ < ⊆ <; this gives us an
induction principle for showing that x < y implies some other binary relation ϕ(x, y) (by showing
that ϕ is also transitive and contains ≺). In contrast, the above yields an induction principle for
showing that x < y for fixed x implies some other unary relation ϕ(y).

The proof is easy using the preceding Exercise: it is easily seen that the same “finite path”
definition also works for the smallest relation containing ≺ and obeying (∗). But as usual, we want
to give a proof avoiding the use of N.

Proof. It is clear that < obeys (∗), hence contains the smallest relation <′ containing ≺ and obeying
(∗). It remains to show that <′ is also transitive, hence contains <. That is, we must show

∀y <′ z ∀x ∈ X (x <′ y =⇒ x <′ z)︸ ︷︷ ︸
ϕ(y,z)

.

We induct on y <′ z, i.e., we show that the set of (y, z) satisfying ϕ also contains ≺ and obeys (∗).
Indeed, y ≺ z =⇒ ϕ(y, z) since <′ satisfies (∗) by definition. And we have

ϕ(x, y) and y ≺ z ⇐⇒ ∀w ∈ X (w <′ x =⇒ w <′ y) and y ≺ z
=⇒ ∀w ∈ X (w <′ x =⇒ w <′ z) ⇐⇒ ϕ(x, z)

again since <′ satisfies (∗).

Corollary 3.114. Let ≺ ⊆ X2, < be its transitive closure, and ≤ := < ∪ (=). Then

< = ≺ ∪ (≺ ◦<) = ≺ ◦ ≤.

Proof. By Exercise 3.18(c) (applied to T (R) := ≺ ◦R).

Corollary 3.115. Let ≺ ⊆ X2 be a binary relation, < be its transitive closure, and ≤ = < ∪ (=).
Then ≤ is a simulation between each pair among (X,≺), (X,<). In particular, for all x ∈ X,

x ≂(X,≺),(X,<) x;

and WF(≺) = WF(<), so ≺ is well-founded iff < is.

This generalizes Example 3.90 in the case of N.

Proof. To say that ≤ is a simulation of < in ≺ means (Definition 3.67)

(≤ ◦<) ⊆ (≺ ◦ ≤).

The LHS is (< ∪=) ◦< = (< ◦<) ∪< = <, which is equal to the RHS by the preceding result.
For the other three simulations, we either decrease < on the LHS to ≺, or increase ≺ on the RHS

to <, so the ⊆ is even more true. The last claim follows from Proposition 3.68.

Example 3.116. In contrast to the case of N (Example 3.90), even between a partial well-order <
and itself, ≲ could be strictly more than ≤. Take a < b, c, where b, c are incomparable; then b ≡ c.

On the other hand:

Lemma 3.117. For any well-founded ≺ ⊆ X2, we have ≲X,X ∩ ≻ = ∅.

Proof. If y ≺ x ≲ y, then there exists z ≺ y such that y ≲ z; thus the set of such x (or such y) has
no minimal element, hence must be empty.
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Corollary 3.118. For a well-order (X,<), we have ≲X,X = ≤; thus (≂) = (≡) = (=).

Proof. By the two preceding results, ≤ ⊆ ≲ ⊆ X2\> = ≤. Thus (≂) = (≲∩≳) = (≤∩≥) = (=).

Corollary 3.119. For any binary relation (X,≺) and well-order (Y,<), ≂X,Y is a partial function.

Proof. (≂X,Y ) ◦ (≂X,Y )−1 = (≂X,Y ) ◦ (≂Y,X) ⊆ (≂Y,Y ) = (=Y ) (cf. Exercise 2.55).

We now show that the global structure of ≲ is (essentially) a proper-class-sized well-order:

Lemma 3.120. Let (X,≺X), (Y,≺Y ) be sets with binary relations, x ∈ X, and y ∈ Y . Then

x ≲ y or ∃x′ ≺ x (y ≲ x′);

in particular,

x ≲ y or y ≲ x.

Proof. The second line follows from the first, since x′ ≺ x =⇒ x′ ≲ x (Corollary 3.115).
To prove the first line: if y ̸∈WF(≺Y ), then x ≲ y by Example 3.88. Now suppose y ∈WF(≺Y ).

We prove by induction that ∀x ̸≲ y ∃x′ ≺ x (y ≲ x′). Assume this holds for all y′ ≺ y. If x ̸≲ y, then

∃x′ ≺ x ∀y′ ≺ y (x′ ̸≲ y′),

which by the IH means

∃x′ ≺ x ∀y′ ≺ y ∃x′′ ≺ x′ (y′ ≲ x′′),

or

∃x′ ≺ x (y ≲ x′).

Corollary 3.121. Let (X,≺X), (Y,<Y ) be sets with binary relations, with the latter a partial
well-order. Then for x ∈ X and y ∈ Y ,

x ≲ y ⇐⇒ ∃y′ ≤ y (x ≂ y′),

i.e.,

≲X,Y = ≤Y ◦≂X,Y .

Thus

x ≲ y ⇐⇒ ∀x′ ≺ x ∃y′ < y (x′ ≂ y′).

Proof. ⇐= follows from Corollary 3.115. Conversely, suppose x ≲ y. Let y′ ≤ y be minimal such
that x ≲ y′. Then for every y′′ < y′, we have x ̸≲ y′′ (here using that y′′ ≤ y by transitivity), so by
the preceding lemma, y′′ ≲ x′ for some x′ ≺ x. Thus y′ ≲ x. For the last statement: we have

x ≲ y ⇐⇒ ∀x′ ≺ x ∃y′ < y (x′ ≲ y′)

⇐⇒ ∀x′ ≺ x ∃y′′ ≤ y′ < y (x′ ≂ y′′)

⇐⇒ ∀x′ ≺ x ∃y′′ < y (x′ ≂ y′′).

Corollary 3.122. Let (X,<X), (Y,<Y ) be sets with partial well-orders. Then (≂X,Y ) = (≡X,Y ).

Proof. ⊇ is by Corollary 3.85. To show ⊆: by the preceding result,

≂X,Y ◦<X ⊆ ≲X,Y ◦<X

⊆ <Y ◦≲X,Y

= <Y ◦ ≤Y ◦≂X,Y

= <Y ◦≂X,Y ,

and similarly ≂Y,X ◦<Y ⊆ <X ◦≂Y,X , thus ≂X,Y is a bisimulation.
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Corollary 3.115 tells us that up to simulability, every (well-founded) relation may be replaced
with a partial (well-)order; while the two preceding results tell us that simulability between partial
well-orders may essentially be understood in terms of bisimilarity, for which we already have the
complete classification via Mostowski collapse ξ. Putting everything together, we get: for two
well-founded relations (X,≺X), (Y,≺Y ), with transitive closures <X , <Y , for x ∈ X and y ∈ Y ,

x ≂≺X ,≺Y y ⇐⇒ x ≂<X ,<Y y by Corollary 3.115

⇐⇒ x ≡<X ,<Y y by Corollary 3.122

⇐⇒ ξ<X (x) = ξ<Y (y) by (3.93),

x ≲≺X ,≺Y y ⇐⇒ x ≲<X ,<Y y by Corollary 3.115

⇐⇒ ∃y′ ≤ y (x ≡<X ,<Y y′) by Corollaries 3.121 and 3.122

⇐⇒ ξ<X (x) ∈ ξ<Y (y) or ξ<X (x) = ξ<Y (y) by (3.93)

⇐⇒ ∀x′ < x∃y′ < y (x′ ≡<X ,<Y y′) by Corollaries 3.121 and 3.122

⇐⇒ ξ<X (x) ⊆ ξ<Y (y).

Definition 3.123. Let ≺ ⊆ X2 be a well-founded relation, < be its transitive closure. The ≺-rank
of x ∈ X is defined inductively by16

ρ(x) = ρ≺(x) := ξ<(x) = {ξ<(x′) | x′ < x}
= {ρ≺(x) | x′ < x}
= {ρ(x′) | x′ ≺ x} ∪ {ρ(x′′) | x′′ < x′ ≺ x} by Corollary 3.114

= {ρ(x′) | x′ ≺ x} ∪
⋃

x′≺x ρ(x′)

=
⋃

x′≺x(ρ(x) ∪ {ρ(x)}).
Thus, for two sets with well-founded relations (X,≺X), (Y,≺Y ), for x ∈ X and y ∈ Y , by the above,

(3.124)
x ≂ y ⇐⇒ ρ(x) = ρ(y),

x ≲ y ⇐⇒ ρ(x) ∈ ρ(y) or ρ(x) = ρ(y) ⇐⇒ ρ(x) ⊆ ρ(y).

Similarly to Proposition 3.96, ρ(x) in fact picks out a representative in the ≃-class of x:

(X,≺) (X,<) (V,∈)id

⊆≂ (by 3.115)

ρ

ξ

⊆≡ (by 3.96)

Example 3.125. In N with the successor relation x ≺ y :⇐⇒ x+ 1 = y:

ρ(0) = ξ(0) = ∅,
ρ(1) = ρ(0) ∪ {ρ(0)} = ∅ ∪ {∅} = {∅},
ρ(2) = ρ(1) ∪ {ρ(1)} = {∅} ∪ {{∅}} = {∅, {∅}},
ρ(3) = ρ(2) ∪ {ρ(2)} = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}}.

(We will soon define N so that this is the identity function; see Axiom 3.138.)

Exercise 3.126. Let T : P(X)→ P(X) be a monotone set operator. Call T transitive if T ⊆ T ◦T .

(a) Show that for T = T≺, this is equivalent to transitivity of ≺.

(b) Show that Ť := T ◦◦T is the pointwise largest operator pointwise below T , i.e., Ť (A) ⊆ T (A).

(c) Show that T (∅) = Ť (∅). [Recall 3.78. Note that idX is a simulation of T in Ť , while T ◦,
which corresponds to T≤ when T = T≺, is a “simulation” in the reverse direction.]

16As in Remark 3.95, we do not yet know that this inductive definition is justified.
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3.H. Ordinal numbers.

Proposition 3.127 (cf. Proposition 3.105). For a set α, the following are equivalent:

(i) α is transitive and ∈α ⊆ α× α is a well-order.
(ii) α is transitive and ∈α is a partial well-order, i.e., transitive and well-founded.

(iii) α is transitive, each β ∈ α is transitive, and ∈α is well-founded (i.e., Foundation for α).
(iv) ∈α is a partial well-order and ξ∈α = idα.
(v) ∈α is a partial well-order and α = ξ∈[α].

(vi) ∈α is well-founded and ρ∈α = idα.
(vii) ∈α is well-founded and α = ρ∈[α].

(viii) α = ξ<[X] for some partial well-order < ⊆ X2.
(ix) α = ξ<(x) for some partial well-order < ⊆ X2 and x ∈ X.
(x) α = ρ≺[X] for some well-founded relation ≺ ⊆ X2.

(xi) α = ρ≺(x) for some well-founded relation ≺ ⊆ X2 and x ∈ X.

Proof. (i) =⇒ (ii)⇐⇒ (iii) is obvious.
(ii)⇐⇒ (iv) by Proposition 3.105.
(iv) =⇒ (v) =⇒ (viii) and (vi) =⇒ (vii) =⇒ (x) are obvious.
(iv) =⇒ (vi), (v) =⇒ (vii), (viii) =⇒ (x), and (ix) =⇒ (xi) since ρ = ξ for transitive relations.
(viii)⇐= (x) and (ix)⇐= (xi) since ρ≺ = ξ< by definition.
(viii) =⇒ (ix) and (x) =⇒ (xi) by adding a new greatest element to X, as in Proposition 3.105.
(ix), (xi) =⇒ (i): α = ξ<(x) is transitive and ∈α is well-founded by Proposition 3.105; and

linearity holds since ρ(x) ≤ ρ(y) ⇐⇒ x ≲ y and ≲ is linear by Lemma 3.120.

Definition 3.128. An ordinal number is a set obeying the above equivalent conditions.
The class of all ordinal numbers is denoted ON (also known as Ord or ∞17), and ordered via

α < β :⇐⇒ α ∈ β,
α ≤ β :⇐⇒ α ∈ β or α = β ⇐⇒ α ⊆ β.

Proposition 3.129. ON is a transitive class, i.e., every element of an ordinal is an ordinal; and ∈
is a well-order on the class ON, where well-foundedness means:

(a) The principle of transfinite induction: if A ⊆ ON is a subclass, and every α ∈ ON with
α ⊆ A is in A, then A = ON.

(b) Equivalently, every class ∅ ̸= B ⊆ ON has a ∈-minimal element.
(c) In particular, this holds for nonempty sets B of ordinals.

Proof. Linearity again follows from linearity of ≲ (Lemma 3.120). The only thing left to check is
that well-foundedness of each individual α ∈ ON implies well-foundedness of the entirety of ON.
Indeed, let ∅ ̸= B ⊆ ON be a class; then there is some α ∈ B. If α is minimal in B, we’re done.
Otherwise, α ∩B ⊆ α is nonempty, hence has a minimal element, which is also minimal in B.

Corollary 3.130 (Burali-Forti paradox). ON is a proper class.

Proof. Otherwise, it is an ordinal, whence ON ∈ ON, contradicting well-foundedness.

Corollary 3.131. For a set A, there is a minimum excluded ordinal mexA ̸∈ A.

We can explicitly describe mexA as a set: an ordinal α will be in mexA iff it is < mexA, iff it
and all its predecessors β ∈ α are in A, iff α ⊆ A. Thus

mexA = {α ∈ A ∩ON | α ⊆ A}.
17because ON obeys the same properties as the ordinals, except for being a proper class, hence can be thought of

as an “absolute infinity” bigger than all ordinals; see Corollary 3.130
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Example 3.132. If A ∩ON is already downward-closed (i.e., transitive), then mexA = A ∩ON.

Example 3.133. There is a least ordinal 0 := mex∅ = ∅ = the rank ρ(x) of any minimal element
x with respect to any binary relation.

Example 3.134. There is a next least 1 := mex{0} = {0} = the rank of any non-minimal element
all of whose predecessors are minimal.

Example 3.135. There is a next least 2 := mex{0, 1} = {0, 1}. (Note however that mex{1} = {0}.)
Definition 3.136. More generally, any ordinal α has a successor18

α+ := mex{β ∈ ON | β ≤ α}
= mex(α ∪ {α}) = α ∪ {α}.

Definition 3.137. An ordinal α is a limit ordinal if it is neither 0 nor a successor, i.e., 0 < α,
and for every β < α, also β+ < α, i.e., α contains 0 and is closed under the successor operation.

Axiom of Infinity 3.138. There exists a limit ordinal, hence a least one, called N or ω.

Note that by Knaster–Tarski, N (if it exists) is equivalently the intersection of all limit ordinals,
i.e., n ∈ N iff n is less than (i.e., belongs to) every limit ordinal. Regardless of whether the Axiom of
Infinity holds, we call such ordinals n natural numbers, and denote the class of them by N. Thus,

Infinity ⇐⇒ N is a set ⇐⇒ N ̸= ON.
Exercise 3.139. Suppose there exists a set X which contains ∅ and is closed under the operation
x 7→ x ∪ {x}. Then by Knaster–Tarski, there is a smallest such X. Prove (without using Infinity or
Foundation) that X is then transitive and ∈X is transitive and well-founded, hence X = N.

Thus, the Axiom of Infinity may also be stated as follows, without mentioning transitivity: there
is a set containing ∅ and closed under x 7→ x ∪ {x} (whence there is a smallest such set N).

Definition 3.140. Zermelo–Fraenkel set theory ZF consists of the axioms of ZF−− Infinity (2.26),
plus the Axioms of Foundation 3.97 and Infinity 3.138. ZF− is the same but without Foundation.19

Under ZF−, the ordinals look like:

0 < 1 < 2 < · · · < ω < ω+

=:ω+1
< ω++

=:ω+2
< · · · < sup(+){ω, ω+, ω++, . . . }

=:ω+ω
< · · ·

We see that while ω is an “infinite” number, it is actually the smallest “infinity”; thus we use the
more precise symbol ω, rather than ∞. (As noted above, when ∞ is used in a context involving
ordinals, it usually denotes the “absolute infinity” ON.)

Definition 3.141. For any set A ⊆ ON, its least upper bound or supremum is

supA :=
⋃
A = {β ∈ ON | ∃α ∈ A (β < α)}

(since β ≥ supA ⇐⇒ ∀α ∈ A (β ≥ α)), while its least strict upper bound is

sup+A := A ∪
⋃
A = {β ∈ ON | ∃α ∈ A (β ≤ α)} = supα∈A α

+

=

{
supA if A does not have a maximum element,

α+ = α ∪ {α} if A has maximum α.

18Not to be confused with the successor cardinal; see Definition 5.20. This notation α+ is almost never used for
successor ordinal, which is usually denoted as the soon-to-be-introduced α+ 1; see Example 3.152.

19Zermelo set theory Z− is missing Foundation and Replacement, but includes Infinity; see (2.27). In fact, Zermelo
originally introduced the “wrong” version of Infinity, where n is encoded as {{· · · {∅} · · · }}; in other words, as the
Mostowski collapse with respect to the successor graph, rather than the < relation. It turns out that this version of
Infinity is insufficient to prove the nowadays standard version, i.e., on some foundational level, strong induction really
is stronger than ordinary induction! The modern “strong” encoding of naturals is called the von Neumann encoding.
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Remark 3.142. Definition 3.123 of rank of well-founded ≺ ⊆ X2 now says

ρ(x) = sup+
y≺x ρ(y).

Using suprema and Infinity, we may produce many bigger examples of limit ordinals:

Example 3.143. The countable sequence ω < ω+ < ω++ < · · · (technically defined by induction

on ω; see below) has a sup(+), which is usually called ω + ω (see Definition 3.148).
Taking successor ω many more times yields an ordinal called ω + ω + ω.
Repeating this process ω times, we get an even bigger ordinal called ω2 (see Exercise 3.159).
Similarly, we may produce ω3 < ω4 < · · · , with supremum ωω, and then ωω · ω = ωω+1, . . . ,

ωω+ω, . . . , ωω2
, . . . , ωωω

, . . . , ωωωω

, ωωωωω

, . . . ; the supremum of this sequence is called ε0.

Note that all of these increasingly huge ordinals are all still countable (i.e., have countably many
predecessors, by repeated use of the fact that a countable union of countable is countable).

Theorem 3.144 (Hartogs). For any set X, there is an ordinal that does not inject into X, hence a
least such ordinal η(X), called the Hartogs number of X.

Proof. By definition, an ordinal α < η(X) iff α does inject into X; we must show that the set of all
such α forms a set. Indeed, if f : α ↪→ X is an injection, then f : α ≅ im(f) is a bijection, hence we
may transfer the ordering <α = ∈α on α to a well-ordering <im(f) ⊆ im(f)2 such that f becomes

an isomorphism, whence f−1 = ξ<im(f)
: im(f) ≅ α. Thus

η(X) = {α | ∃A ⊆ X, <A ⊆ A2 (<A is a well-order on X and α = ξ<A [A])}
is a set by Replacement.

Example 3.145. There is a least uncountable ordinal, called ω1 := η(ω), much bigger than all of
the ordinals built from ω above. Then there is an even bigger ω2 := η(ω1), etc. (See Definition 5.20.)

As usual for a well-founded relation, we have not only a principle of transfinite induction for ON,
but also a principle of inductive definitions as in 3.51. We will in fact give a new proof of this, more
powerful than that in Theorem 3.51 because it does not rely on the impredicative Knaster–Tarski
Theorem 3.6, hence does not require either the domain or codomain of the function to be sets:

Theorem 3.146 (principle of transfinite inductive definition). Let (Yα)α∈ON be a family of classes,(
Fα :

∏
β<α Yβ → Yα

)
α∈ON

∈
∏

α∈ON Y
∏

β<α Yβ
α .

Formally, the family (Yα)α is (not a function from ordinals to classes but) a single proper class Y of
pairs (α, y) such that y ∈ Yα; likewise, the Fα’s can be represented as a single proper class function
F (α, y⃗). Then there is a unique (proper class) function f ∈

∏
α∈ON Yα such that for each α,

(∗) f(α) = Fα((f(β))β<α).

Proof. We will first prove that for each α ∈ ON, it is possible to define a unique initial segment
fα ∈

∏
β≤α Yβ of our desired f obeying (∗), by induction on α. Assume that for all α′ < α, it is

possible to define a unique fα′ on all β ≤ α′. Then for α′′ < α′ < α, by uniqueness, fα′′ must be the
restriction of fα′ to β ≤ α′′, since said restriction also obeys (∗). It follows that gα :=

⋃
α′<α fα′ is

still a function (on domain α), since any two fα′ , fα′′ for α′, α′′ < α agree on their common domain.
The desired fα is then gα extended with the single value fα(α) := Fα(gα), by (∗).

Now given the unique fα defined on β ≤ α for all α, by the same uniqueness argument as above,
for α′ < α, fα′ must be the restriction of fα. Then the desired f is

⋃
α∈ON fα, i.e., f(α) := fα(α).

Exercise 3.147. Along similar lines, give a direct proof of well-founded inductive definition (3.51)
for any partial well-order < ⊆ X2 on a set, with the codomains (Yx)x∈X allowed to be classes. Using
transitive closure, extend this to arbitrary well-founded relations ≺ ⊆ X2.
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3.I. Ordinal arithmetic.

Definition 3.148. The sum of two ordinals α, β is defined by induction on β as follows:

α+ β := α ∪ {α+ γ | γ < β}

=

{
α if β = 0,

sup+
γ<β(α+ γ) if β > 0,

=


α if β = 0,

(α+ γ)+ if β = γ+,

supγ<β(α+ γ) if β is a limit ordinal.

Exercise 3.149. How do these definitions fit into the formalism of Theorem 3.146?

Proposition 3.150. The three definitions above really are equivalent.

These three definitions illustrate a common pattern in many definitions by transfinite induction:
we may either separate into a “base case” for zero, an “inductive case” for successor, and a limit
case which typically just takes supremum; or we may combine successor and limit (and sometimes
also zero) by applying the inductive case to all predecessors and then taking their supremum.

Proof. First, we take the first definition as given, and check that the second recursive equation then
also holds. If β = 0, then clearly α+ β = α as desired. Otherwise, we have

sup+
γ<β(α+ γ) = {α+ γ | γ < β} ∪

⋃
γ<β(α+ γ) by Definition 3.141

= {α+ γ | γ < β} ∪
⋃

γ<β(α ∪ {α+ δ | δ < γ})
= {α+ γ | γ < β} ∪ α since δ < γ < β =⇒ δ < β.

Next, note that by either the first or second definition,

Proposition 3.151. + is strictly monotone in the second argument: γ < β =⇒ α+γ < α+β.

Now we check that the second and third definitions are equivalent. If β = γ+, then by monotonicity,
the largest α+ δ among δ < β is α+ γ, hence the sup+ in the second definition reduces to (α+ γ)+.
And if β is a limit ordinal, then by strict monotonicity, the set of α + δ for δ < β has no upper
bound either, hence the sup+ reduces to a sup.

Example 3.152. For any ordinal α, we have

α+ 0 = α,

α+ 1 = (α+ 0)+ = α+.

(So from now on, we will rarely write α+.) For instance,

1 + 1 = 1+ = 2.

Note that the second clause of the third definition above becomes

α+ (γ + 1) = (α+ γ) + 1.

Proposition 3.153. + on ordinals is associative: (α+ β) + γ = α+ (β + γ).

Proof. By induction on γ. If γ = 0, both sides simplify to α+ β. Otherwise,

(α+ β) + γ = sup+
δ<γ((α+ β) + δ) = sup+

δ<γ(α+ (β + δ)) by IH

= sup+
ε<β+γ(α+ ε) = α+ (β + γ),

using in the second-last step that every ε < β + γ = β ∪ {β + δ | δ < γ} is either some β + δ, or
< β = β + 0 whence α+ ε < α+ (β + 0).
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Exercise 3.154. Prove that 0 + α = α for every ordinal α.

Example 3.155. We have 1 +ω = sup+{1 + 0, 1 + 1, 1 + 2, . . . } = ω ̸= ω+ 1. It follows by induction
that 1 + α = α ̸= α+ 1 for any α ≥ ω.

Proposition 3.156. + on naturals is commutative: m+ n = n+m for all m,n ∈ N.

Proof. First, we prove 1+n = n+1 by induction. We have 1+0 = 1 = 0+1. Assuming 1+n = n+1,

1 + (n+ 1) = (1 + n) + 1 by definition of +

= (n+ 1) + 1 by IH.

We now prove m+ n = n+m by induction on n. We have

m+ 0 = m by definition of +

= 0 +m by Exercise 3.154.

Now suppose m+ n = n+m. Then

m+ (n+ 1) = (m+ n) + 1 by definition of +

= (n+m) + 1 by IH

= n+ (m+ 1) by definition of +

= n+ (1 +m) by previous case

= (n+ 1) +m by associativity.

Exercise 3.157. Prove that + is weakly monotone in the first argument: α ≤ β =⇒ α+γ ≤ β+γ.

Exercise 3.158. Prove that α ≤ β iff α+ γ = β for some γ, and in that case, γ is unique.

Exercise 3.159. Let (X,<) be a well-ordered set (e.g., an ordinal), and (αx)x∈X be a family of
ordinals. Define the indexed sum

∑
x∈X αγ by induction on ρ[X] as follows:∑

x∈X αx := supx∈X(
∑

y<x αy + αx).

(a) Give an equivalent definition, split into “zero”, “successor”, and “limit” cases, depending on
whether X is empty or has a greatest element.

(b) Verify that
∑

x∈1 αx = α0 and
∑

x∈2 αx = α0 + α1.
(c) Prove that

∑
x<β 1 = β.

As a special case, define the product of ordinals α, β by

α · β :=
∑

γ<β α.

(d) Conclude that α · 1 = α = 1 · α.
(e) Prove that α · 0 = 0 = 0 · α.
(f) What are ω · 2, 2 · ω?

We now give another perspective on ordinal sums and products. Let (X,<X) be a well-ordered set,
and for each x ∈ X, let (Yx, <YX

) be a well-ordered set. Recall from Definition 2.76⊔
x∈X Yx := {(x, y) | x ∈ X and y ∈ Yx}.

The lexicographical order <lex on
⊔

x∈X Yx is defined as in 3.28, and is a well-order as in 3.29.

(g) Prove that ρ<lex
[
⊔

x∈X Yx] =
∑

x∈X ρ[Yx]. In particular, ρ<lex
[
⊔

x∈X αx] =
∑

x∈X αx.
(h) Prove the indexed associative law : for any well-ordered sets X, (Yx)x∈X and ordinals

(αx,y)x∈X,y∈Yx , ∑
x∈X

∑
y∈Yx

αx,y =
∑

(x,y)∈
⊔

x∈X Yx
αx,y.

(i) Conclude that · on ordinals is associative and distributes over
∑

on one side [see (f)].
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Exercise 3.160. Prove that · on naturals is commutative.

Exercise 3.161. What can you say about monotonicity of ·?

Exercise 3.162. Prove that for any ordinals α, β, there are unique γ (quotient) and δ (remainder)
such that α = β · γ + δ and δ < β.

Exercise 3.163. Let (X,<) be a well-ordered set, and (αx)x∈X be a family of ordinals. Define the
indexed product

∏
γ<β αγ by induction on ρ[X] as follows:20

∏
x∈X αx :=


1 if X = ∅,∏

y<x αy · αx if X has a maximum x,

supz<x∈X
∏

y<x αy if X is neither empty nor has a maximum.

In particular, for two ordinals α, β, define ordinal exponentiation

αβ :=
∏

γ<β α.

(a) What is 0α? More generally, what is
∏

γ<β αγ if some αγ = 0?

(b) What is 1α?
(c) What is 2ω? [See Footnote 20.]
(d) Prove that (m · n)k = mk · nk for naturals m,n, k. Give a counterexample for ordinals.

For a linearly ordered set (X,<X) and partially ordered sets (Yx, <Yx)x∈X , the lexicographical
order on

∏
x∈X Yx is given by

y⃗ <lex z⃗ :⇐⇒ ∃x ∈ X (yx < zx and ∀x′ < x (yx = zx)).

(e) Verify that this is a partial order.
(f) Verify that if <X is a well-order and each <Yx is a linear order, then <lex is linear.
(g) Show that even if <X and each <Yx are well-orders, <lex might not be.

Now suppose >X is a well-order, and each <Yx is a well-order, with least element 0x ∈ Yx. Let⊕
x∈X Yx :=

{
y⃗ ∈

∏
x∈X Yx

∣∣ {x ∈ X | yx ̸= 0x} is finite
}
.

(Finite means there is a bijection with some n ∈ N; see Definition 4.4.)

(h) Prove that <lex restricted to
⊕

x∈X Yx is a well-order.
(i) Prove that ρ<lex

[
⊕

x∈X Yx] =
∏

x∈X ρ[Yx], where
∏

uses the well-order >X on X. In
particular, ρ<lex

[
⊕

x∈X αx] =
∏

x∈X αx if every αx ̸= 0 (otherwise apply (a)).

(j) Use this to prove that α
∑

x∈X βx =
∏

x∈X αβx . In particular, αβ+γ = αβ ·αγ and αβ·γ = (αβ)γ .

Exercise 3.164. Let α, β (“base”) be ordinals.

(a) Prove that if α > 0, then there are unique γ (exponent), 0 < δ < β (“digit”), and ε < βγ

(remainder) such that α = βγ · δ + ε.
(b) Prove that there is a unique finite sequence γk−1 > γk−1 > · · · > γ0 (possibly with k = 0)

and “digits” 0 < δ0, . . . , δk−1 < β such that

α = βγk−1 · δk−1 + · · ·+ βγ0 · δ0.

When β = ω, this “base ω expansion” is known as the Cantor normal form of α.
[Warning: it is possible for the largest exponent γk−1 to be equal to α.]

(c) What are the base 2, respectively base ω, expansions of: ω + 3, ω3 + ω · 3, ωω3 · ω · 3, ω1?

20Warning: this is distinct from cardinal product; see Remark 5.30. Unlike the indexed sum, the indexed product
of ordinals doesn’t even have the same cardinality as the cardinal product.
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3.J. The revenge of Knaster–Tarski. Recall that the proof of Knaster–Tarski given in Theo-
rem 3.6 was “top-down” or impredicative (Remark 3.14). Using transfinite induction, we now give a
“bottom-up” proof, that also has the benefit of generalizing to proper classes (to a certain extent).

Definition 3.165. For a class X, the powerclass P(X) = {A | A ⊆ X} is defined as before
(Example 2.6). Note that this is now the class of all subsets of X, since the elements of a
comprehension must be sets. In particular, if X is a proper class, P(X) has no greatest element.

Definition 3.166. Let X be a class. A monotone set operator T : P(X)→ P(X) means the
same thing as in Definition 3.1, i.e., a monotone class function mapping each subset to another.

Given such T , if we instead have a subclass A ⊆ X, we define

T (A) :=
⋃
{T (B) | B ⊆ A}

= {x | ∃B ⊆ A (x ∈ T (B))}.
Again, here B ranges over all subsets. Note that if A happens to be a subset, then there is a largest
such B ⊆ A, namely A; hence this agrees with the original value of T on A (using monotonicity).

We say a subclass A ⊆ X is T -closed if T (A) ⊆ A, i.e., T (B) ⊆ A for every subset B ⊆ A.

Theorem 3.167 (Knaster–Tarski II). Let X be a class, T : P(X) → P(X) be a monotone set
operator, A ⊆ X be a subset. Define sets Aα ⊆ X for each α ∈ ON by induction as follows:

A0 := A,

Aα+1 := Aα ∪ T (Aα),

Aα :=
⋃

β<αAβ for a limit ordinal α.

This is equivalent to

Aα :=
⋃

β<α(Aβ ∪ T (Aβ)) for α > 0,

Aα := A ∪
⋃

β<α T (Aβ) for all α.

Then (Aα)α is a monotone transfinite sequence, i.e., β ≤ α =⇒ Aβ ⊆ Aα; and

T (A) :=
⋃

α∈ONAα

is the smallest T -closed subclass of X containing A. Moreover, if A ⊆ T (A), then we have

Aα+1 := T (Aα),

Aα :=
⋃

β<α T (Aβ) for α > 0,

hence T (T (A)) = T (A). In particular, this holds for A = ∅. (See the picture (3.15).)

Proof. First, we assume that A ⊆ T (A). We take A0 := A and the last equation as the definition of
Aα for α > 0. We then have Aα ⊆ T (Aα) for all α: for α > 0, assuming Aβ ⊆ T (Aβ) for all β < α,
we have T (Aβ) ⊆ T (T (Aβ)) ⊆ T (Aα) for all β < α, whence Aα =

⋃
β<α T (Aβ) ⊆ T (Aα). Then

β < α =⇒ Aβ ⊆ T (Aβ) ⊆ Aα, i.e., the sequence is monotone. The rest of the recursions defining
Aα now immediately follow from the last, except for Aα =

⋃
β<αAβ for limit α, which follows from

β < α =⇒ β + 1 < α and so
⋃

β<αAβ =
⋃

β<αAβ+1 =
⋃

β<α T (Aβ) (cf. Proposition 3.150).

We now verify that T (A) ⊆ X is the smallest T -closed subclass containing A. If B ⊆ X is
any T -closed subclass containing A, then we prove T (A) =

⋃
αAα ⊆ B, i.e., Aα ⊆ B for all α,

by induction on α: we have A0 = A ⊆ B, and for α > 0, assuming Aβ ⊆ B for all β < α, then

T (Aβ) ⊆ T (B) ⊆ B for all β < α, whence Aα =
⋃

β<α T (Aβ) ⊆ B. Clearly A = A0 ⊆ T (A). To

show T (A) is T -closed, let B ⊆ T (A) be a subset, and for each x ∈ B, let αx be least such that
x ∈ Aαx ; then letting α := supx∈B αx, we have B ⊆ Aα, whence T (B) ⊆ T (Aα) = Aα+1 ⊆ T (A).

This concludes the proof assuming A ⊆ T (A). To deduce the general case, apply the special case
to T ′(A) := A ∪ T (A), or to TA(B) := A ∪ T (B) from Exercise 3.18.
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In the case where A ⊆ T (A), it is convenient to think of Aα as the “αth iterate of T of A”:

Tα(A) :=

{
A if α = 0,⋃

β<α T (T β(A)) if α > 0.

(It is literally (T ◦ · · · ◦ T )(A) when α ∈ N.) Then thinking of ON as “∞” (Footnote 17), we write

T∞(A) := T (A) =
⋃

α<∞ Tα(A).

In particular, we may always write these for A = ∅.

Definition 3.168. For a monotone T : P(X)→ P(X) and x ∈ T (∅) = T∞(∅), the T -rank of x is

ρT (x) := min{α ∈ ON | x ∈ Tα+1(∅)}.
(Note that the least β with x ∈ T β(∅) must be a successor, since T β(∅) =

⋃
α<β T

α(∅) for limit β.)
By definition,

ρT (x) = α ⇐⇒ x ∈ Tα+1(∅) \ Tα(∅).

It follows that
ρT [X] := {ρT (x) | x ∈ X} = {α ∈ ON | Tα(∅) ⊊ Tα+1(∅)}.

This is an initial segment of ON, since if Tα(∅) is already T -closed, then it must be T (∅); in other
words, it is either an ordinal, or the entirety of ON = ∞. If it is an ordinal, then the transfinite
sequence ∅ ⊆ T (∅) ⊆ T 2(∅) ⊆ · · · increases up to T ρT [X](X) = T (∅) and then stops.

Note that in the above proof of Theorem 3.167, to show that T (∅) is T -closed, we essentially used
that for a subset B ⊆ T (∅), necessarily α := sup+ ρT [B] <∞, whence B ⊆ Tα(∅). By replacing
∞ here with a smaller cardinality, we get

Proposition 3.169. Suppose a monotone set operator T : P(X)→ P(X) is finitary, meaning

T (A) =
⋃

finite B⊆A T (B),

i.e., whenever x ∈ T (A), then x ∈ T (B) for some finite B ⊆ A.21 Then for any A ⊆ X, the
transfinite sequence (Aα)α∈ON from Theorem 3.167 stabilizes at Aω = Aω+1; thus T (A) = Aω.

In particular, T (A) is a set if A is.

Proof. For any finite B ⊆ Aω, each x ∈ B is in some (least) αx < ω; then letting α := supx∈B αx,
we have B ⊆ Aα, whence T (B) ⊆ T (Aα) = Aα+1 ⊆ Aω. Thus T (Aω) =

⋃
finite B⊆Aω

T (B) ⊆ Aω, so

Aω is already T -closed and hence equal to T (A).

Example 3.170. To generate a subgroup of a group (Example 3.4), or an equivalence relation
from an arbitrary binary relation (Example 3.5), only takes ω many steps, since each newly derived
group element or pair depends on ≤ 2 existing elements.

Remark 3.171. Analogous bounds hold for higher cardinalities; see Corollary 5.49 and Exercise 5.69.

Exercise 3.172. Show that for a monotone set operator T : P(X) → P(X) on a class X, the
T -interior T ◦(A) (cf. Exercise 3.20) of every subclass A ⊆ X exists, and is a set if A is.

Exercise 3.173. Recall the theory of rank for well-founded relations (Definition 3.123).

(a) For a well-founded ≺ ⊆ X2, we have ρ≺ = ρT≺ .
(b) For an arbitrary inductive monotone set operator T : P(X) → P(X), ρT : X → ON is a

simulation from (X,T ) to (ON, T∈), in the sense of Exercise 3.78.
(c) If T is transitive in the sense of Exercise 3.126, then ρ−1

T is also a simulation.
(d) Thus, for arbitrary inductive monotone T , each x ∈ X is “mutually simulable” with its rank.

[Recall 3.126(c).]

21Other synonymous terminology include of finite character, Scott-continuous.
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3.K. Transitive closure, ∈-induction, and the cumulative hierarchy. The axioms of set
theory yield two basic monotone set operators on the universe V , namely

⋃
and P. Note that22⋃

A ⊆ B ⇐⇒ A ⊆ P(B)(3.174)

for any classes A,B ⊆ V . Thus in particular, A is
⋃

-closed iff it is P-open, iff it is transitive.

Definition 3.175. The transitive closure of a class A is the smallest transitive class
⋃
A ⊇ A.

Since
⋃

is clearly a finitary (indeed unary) monotone set operator, by Proposition 3.169,⋃
A = A ∪

⋃
A ∪

⋃⋃
A ∪ · · · =

⋃
n∈N

⋃nA;

in particular, the transitive closure of a set is still a set.23

Example 3.176.
⋃
{{∅}} = {{∅}} ∪ {∅} ∪∅ = {{∅},∅} = 2.

Corollary 3.177. For every set x, there is a set X containing x such that x = ξ∈Xx.

Proof. Let X =
⋃
{x}; then for every y ∈ X, by transitivity, ξ∈Xy = {z ∈ X | z ∈ y} = y.

Corollary 3.178 (Axiom (Schema) of (∈-)Induction). Assume ZF, and let ϕ(x) be a property. If

• for every set x, if every y ∈ x satisfies ϕ(y), then ϕ(x),

then for every set x, ϕ(x). In other words, the global ∈ relation on V is well-founded.

Proof. To show ϕ(x), by Foundation, we may do ∈X -induction on X =
⋃
{x}.

Remark 3.179. Conversely, clearly well-foundedness of the global ∈ implies well-foundedness of
∈X on each set X, i.e., Induction implies Foundation.24 This is analogous to the passage between
well-foundedness of each ordinal α and well-foundedness of the entire class ON in Proposition 3.129.

Exercise 3.180. Every class A also has a transitive interior P◦(A) by Exercise 3.172. Show that

P◦(A) = {x ∈ A |
⋃
x = x ∪

⋃
x ∪

⋃⋃
x ∪ · · · ⊆ A}.

Such x are called hereditarily in A, i.e., x, its elements, its elements’ elements, etc. are all in A.
For example, {∅, {∅}, {{∅}}} is a hereditarily finite set, i.e., in P◦(A) for A = {x | x finite}.

This covers two possible combinations of closure/interior and
⋃
/P, that are related via (3.174).

What about the other two combinations? One of them is again related to Foundation: note that

P(A) = {x | ∀y ∈ x (y ∈ A)} = T∈(A)(3.181)

is the monotone set operator induced (as in Definition 3.37) by the relation ∈ ⊆ V 2.

Definition 3.182. The von Neumann cumulative hierarchy is the transfinite sequence used
to build P(∅) as in the Knaster–Tarski Theorem 3.167:

V0 := P0(∅) = ∅,
V1 := P1(∅) = {∅},
V2 := P2(∅) = {∅, {∅}},
V3 := P3(∅) = {∅, {∅}, {{∅}}, {∅, {∅}}},
Vα := Pα(∅) =

⋃
β<α P(Vβ).

Thus, V∞ := P(∅) is the well-founded part of the universe. The rank ρ(x) of x ∈ V∞ is its ∈-rank

ρ(x) := ρ∈(x) = min{α ∈ ON | x ∈ Vα+1 = P(Vα)}.
22In other words,

⋃
and P form a (monotone) Galois adjunction P(V ) ⇄ P(V ).

23It turns out that this fact cannot be proved without the Axiom of Infinity!
24Once again, in the absence of Infinity, Induction is strictly stronger than Foundation.
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Corollary 3.183. Assuming only ZF− − Infinity, Induction (hence Foundation, assuming Infinity)
is equivalent to V = V∞, i.e., every set x is in Vα for some ordinal α.

The universe under Foundation (or Induction, in the absence of Infinity) looks like:

ON

∅=0=V0

{∅}=1=V1

{{∅}}

{{{∅}}}

{∅, {∅}}=2=V2

V3 3

...

Vω ω

...

V1

V2

V3

V4

Vω

Each level Vα is a set; while the union is the entirety of V . Note that this is a much more precise
version of the picture (2.12): the “boundary” of the universe is the upper fringe; a class A ⊆ V
is proper iff it keeps going up, i.e., is not contained in any Vα. For a set A, the least α such that
A ⊆ Vα, i.e., A ∈ Vα+1, is its rank ρ(A). The ordinals ON form a linearly ordered “spine” that
contains exactly one representative of each rank α (namely α).

Corollary 3.184. Assume Foundation (or Induction, in the absence of Infinity). Then any other class
A ⊆ V can also be written as a transfinite increasing union of sets, namely A =

⋃
α∈ON(A∩Vα).

An important application is a way of building “quotients” by proper class-sized equivalence
relations. Given an equivalence relation ∼ ⊆ X2, the point of the quotient set construction is
to represent each x ∈ X by some “invariant” such that ∼ between x’s becomes equality between
invariants. The usual equivalence class [x] takes all elements equivalent to x; if ∼ (hence X) is
a proper class, then [x] may also be, hence need not exist in the universe even though x does.
But we may instead take a subset of [x] as the “invariant”. For example, this gives one possible
representation of “cardinal numbers” within the universe; see Definition 5.4.

Corollary 3.185 (Scott’s trick). Assume Foundation. Let X be a class, ∼ ⊆ X2 be an equivalence
relation (also a class). Then there is a (class) function π : X → V such that π(x) = π(y) ⇐⇒ x ∼ y.

Proof. Let α(x) := min{α ∈ ON | [x]∩Vα ≠ ∅}, which is always defined since x ∈ Vα for some α by
Foundation, and π(x) := [x] ∩ Vα(x). If x ∼ y, then [x] = [y], whence α(x) = α(y) and π(x) = π(y).
Conversely, if π(x) = π(y), then there is some z ∈ [x] ∩ Vα(x) = π(x) by definition of α(x), whence
also z ∈ π(y) ⊆ [y], whence x ∼ z ∼ y =⇒ x ∼ y.

Exercise 3.186. Show (assuming ZF) that Vω consists precisely of the hereditarily finite sets
(Exercise 3.180).

Exercise 3.187. Show (assuming ZF) that if A is a
⋃

-open set, then ρ(A) is either 0 or a limit
ordinal. (I don’t know of any particular conceptual significance of such sets, unfortunately.)
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4. Choice

4.A. The Axiom of Choice. Given a well-ordered set, we may prove statements and construct
things for each element one by one. (Whereas for a general well-founded relation, we sort of have to
handle incomparable elements simultaneously, since they are not allowed to depend on each other.)
It is thus of interest to know: which sets can be well-ordered?

Proposition 4.1. For a set X, the following are equivalent:

(i) There exists a well-order < on X (we say X is well-orderable).
(ii) There exists a bijection between X and an ordinal.

(iii) There exists an injection from X into a well-ordered set.
(iv) There exists a surjection from a well-ordered set onto X.
(v) There exists a choice function c ∈

∏
A∈P(X)\{∅}A, i.e., c : P(X) \ {∅} → X such that

c(A) ∈ A for each ∅ ̸= A ⊆ X.
(vi) For any set I and family of nonempty subsets (Ai)i∈I ∈ (P(X) \ {∅})I ,

∏
i∈I Ai ̸= ∅.

(vii) For any set I and relation R ⊆ I ×X with dom(R) = I, there is a function R ⊇ f : I → X.

Proof. (i) =⇒ (ii): The rank function ρ< : X ≅ ρ<[X] is a bijection.
(ii) =⇒ (iv) is obvious.
(iv) =⇒ (iii): Let (Y,<) be well-ordered, f : Y ↠ X; then g : X ↪→ Y where g(x) := min f−1(x).
(iii) =⇒ (i): Let (Y,<) be well-ordered, f : X ↪→ Y ; then x < x′ :⇐⇒ f(x)< f(x′) well-orders X.
(v) =⇒ (vi): (c(Ai))i∈I ∈

∏
i∈I Ai.

(vi)⇐⇒ (vii) follows from the canonical bijection P(I ×X) ≅ P(X)I (Exercise 2.82).
(vii) =⇒ (v): Take R := ∋ ⊆ (P(X) \ {∅})×X.
(i) =⇒ (v): c(A) := minA.
(v) =⇒ (ii): Define Aα ⊆ X, which is either empty or a singleton, for each α ∈ ON inductively:

Aα :=

{
∅ if

⋃
β<αAβ = X,

{c(X \
⋃

β<αAβ)} else.

Note that if Aα = ∅, then clearly Aβ = ∅ for all β > α. Also, if Aα, Aβ ̸= ∅ and α ≠ β, WLOG
with β < α, then (the unique elements of) Aα, Aβ differ by definition of Aα. We thus have an
injection from an initial segment of ON, namely all those α such that Aα ≠ ∅, mapping such α to
the unique element of Aα ⊆ X. Since X is a set, the initial segment of those α’s must also form a
set, hence an ordinal γ ⊆ ON, such that Aγ = ∅ since γ ̸∈ γ; thus α 7→ unique element of Aα is a
bijection γ ≅ X.

Axiom 4.2 (Choice (AC)). Every set is well-orderable, i.e., the equivalent conditions above hold.
(Conditions (i), (ii), (iii) and (iv) are known as the well-ordering theorem.)

Definition 4.3. Zermelo–Fraenkel set theory with Choice ZFC consists of the axioms of ZF
(Definition 3.140) together with the Axiom of Choice. (See the diagram (2.27).)

The Axiom of Choice is unique among the axioms of ZFC in asserting the existence of a mathe-
matical object, namely a choice function or a well-order, which obeys certain properties that by
no means uniquely characterize it. By contrast, most of the other axioms (2.27) are special cases
of unrestricted Comprehension, which assert the existence of a set which is necessarily unique by
Extensionality (while Foundation asserts that certain kinds of sets don’t exist). For this reason,
Choice is often regarded as a “non-constructive” axiom; see Theorem 4.20.

Nonetheless, the Axiom of Choice is extremely useful, to the point that one often uses it without
thinking, and doing math without it can feel quite bizarre, as the following applications illustrate:

Definition 4.4. A set X is finite if there exists a bijection between X and a natural.
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Proposition 4.5. If a set X is infinite (i.e., not finite), then there is an injection f : N ↪→ X.

Proof. Choose inductively f(n) ∈ X \ f [n]; this is always possible, or else we would have f : n ≅ X.
More precisely, we first fix a choice function c ∈

∏
A∈P(X)\{∅}A, and then define An ⊆ X \⋃

m<nAm which is either empty or a singleton {f(n)} inductively for each n ∈ N as in Proposition 4.1.
Having done so, we may show that An ≠ ∅ for all n, or else for the least n such that An = ∅, we
would have a bijection f : n ≅ X taking each m < n to the unique element of Am.

Or more concisely, we’ve already done the work in Proposition 4.1 of showing that there exists a
bijection f : α ≅ X from an ordinal ; now by assumption, α is not a natural, hence ω ≤ α, and so
the restriction of f to ω is the desired injection.

Exercise 4.6. Show that if A ⊆ R has no upper bound (i.e., no b ∈ R such that a ≤ b for all a ∈ A),
then there is a sequence N→ A converging to ∞. Be explicit about uses of Choice.

The preceding two applications of Choice both follow from the following weakening:

Exercise 4.7 (Countable Dependent Choice (DC)). Show (over ZF) that the following statements
are equivalent:

(i) For every set X ̸= ∅ and relation R ⊆ X2 with dom(R) = X, there exists a sequence
f : N→ X such that f(n) R f(n+ 1) for all n ∈ N.

(ii) For every sequences of sets (Xn)n∈N with X0 ̸= ∅ and relations (Rn ⊆ Xn ×Xn+1)n∈N with
dom(Rn) = Xn, there exists a sequence f ∈

∏
n∈NXn such that f(n) Rn f(n+ 1) for all n.

Show that these statements are implied by the full Axiom of Choice, and explain how the above
two results follow from ZF + DC.

Exercise 4.8. Show using DC that for a function f : R→ R, the following are equivalent:

(i) For every convergent sequence (xn)n∈N ∈ RN, limn→∞ f(xn) = f(limn→∞ xn).
(ii) For every ε > 0 and x ∈ R, there exists δ > 0 such that for every y ∈ R with |x− y| < δ, we

have |f(x)− f(y)| < ε.

Exercise 4.9. Let V be a vector space (over R, say). Show that V is finite-dimensional iff there is
no strictly increasing sequence of vector subspaces W0 ⊊W1 ⊊ · · · ⊆ V .

Many other familiar “basic” results in analysis and algebra also fail in the absence of at least DC.

Example 4.10. The following common situation does not require Choice, despite appearances.
Given a function f : X → Y and an equivalence relation ∼ ⊆ X2, if ∀x1 ∼ x2 (f(x1) = f(x2)), then

f descends to a function on the quotient set f̃ : X/∼ → Y , defined by f̃([x]) := f(x).
It may appear that we are “choosing an arbitrary representative x from the equivalence class”;

however, because the choice doesn’t matter, we can simply define f̃ via comprehension:

f̃ := {(C, y) ∈ X/∼× Y | ∃x ∈ C (f(x) = y)}
= {(C, y) ∈ X/∼× Y | ∀x ∈ C (f(x) = y)}.

Exercise 4.11. Show that full Choice is equivalent to: every surjection f : X ↠ Y has a section
(right inverse) g : Y ↪→ X.

Exercise 4.12. Show that the following statement is equivalent to full Choice. For any set X, set
I, sets (Ji)i∈I , and sets (Ai,j ⊆ X)i∈I,j∈Ji ,⋂

i∈I

⋃
j∈Ji

Ai,j =
⋃

(ji)i∈I∈
∏

i∈I Ji

⋂
i∈I

Ai,ji .

[It suffices to consider X = 1.] Similarly, for a set I, sets (Ji)i∈I , and reals (xi,j ∈ [0, 1])i∈I,j∈Ji ,

inf
i∈I

sup
j∈Ji

xi,j = sup
(ji)i∈I∈

∏
i∈I Ji

inf
i∈I

xi,ji .
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4.B. Basic combinatorial constructions. Returning to our original motivation for the Axiom of
Choice: a large class of applications consists of inductively constructing objects satisfying various
constraints. Roughly speaking, the general format of such constructions is: if all the constraints are
finitary in nature, and finitely consistent with each other, then they can be satisfied.

Theorem 4.13. Let X be a set, R ⊆ X2 be a directed graph (i.e., binary relation). Then there is
a maximal R-clique A ⊆ X, i.e., A2 ⊆ R.

Proof. Fix a well-order < ⊆ X2. Define <-inductively

A := {x ∈ X | ((A ∩ ↓x) ∪ {x})2 ⊆ R}.
(That is, define inductively the indicator function f : X → 2 of A by

f(x) = 1 :⇐⇒ ((f |↓x)−1(1) ∪ {x})2 ⊆ R,

and then put A := f−1(1).) Then A2 ⊆ R, since for any (x0, x1) ∈ A2, letting xi be the maximum
coordinate, we have (x0, x1) ∈ ((A ∩ ↓xi) ∪ {xi})2 ⊆ R. And A is maximal as such, since for x ̸∈ A,
we have ((A ∩ ↓x) ∪ {x})2 ̸⊆ R, hence also (A ∪ {x})2 ̸⊆ R, so x cannot be added to A.

Corollary 4.14 (Hausdorff maximality principle). Every poset (X,≤) has a maximal linearly
ordered subset.

Proof. Take R := ≤ ∪≥ above.

Corollary 4.15 (Zorn’s lemma). Let (X,≤) be a poset such that every linearly ordered subset has
an upper bound. Then X has a maximal element.

Proof. Let C ⊆ X be maximal linearly ordered, u be an upper bound of it. Then u is maximal,
since if v ≥ u, then v is also an upper bound of C, whence v ∈ C by maximality, whence v ≤ u.

Exercise 4.16. Show (over ZF) that Zorn’s lemma implies Choice. Thus the preceding three results
are all equivalent to Choice.

Zorn’s lemma is frequently used in “ordinary” math outside of logic, often in proofs that have the
flavor of transfinite/well-ordered induction (but do not require knowing what these words mean).
The following generalization of Theorem 4.13 is a typical example; we give two proofs.

Theorem 4.17. Let X be a set, Rn ⊆ Xn for each n ∈ N be a family of finitary relations (a
“directed hypergraph”). Then there is a maximal A ⊆ X such that An ⊆ Rn for each n.

Proof 0. Copy Theorem 4.13 (replacing A2 with An).

Proof 1. Consider the poset of all such A, ordered by inclusion. If C ⊆ P(X) is a linearly
ordered set of such A, then

⋃
C is also such an A, i.e., (

⋃
C)n ⊆ Rn for each n, since for any

x⃗ = (x0, . . . , xn−1) ∈ (
⋃
C)n, each xi ∈ Ai for some Ai ∈ C, whence the largest Ai contains all of

x0, . . . , xn−1, whence x⃗ ∈ An
i ⊆ Rn. Now apply Zorn’s lemma.

Corollary 4.18. Every vector space V over every field K has a basis.25

Corollary 4.19. There exists a function f : R→ R such that

f(x+ y) = f(x) + f(y) ∀x, y ∈ R,

yet f is not given by f(x) = cx for any constant c ∈ R.

Proof. Pick a Q-basis B ⊆ R and define the Q-linear transformation f by scaling basis elements by
different amounts.

25A theorem of Andreas Blass shows that this is equivalent over ZF to Choice!
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Can you think of such a function? The following theorem is well beyond the scope of this course:

Theorem 4.20. It is not possible to explicitly define any such function f : R→ R. More precisely:

(a) It is not possible26 to prove from ZF + DC that any such function exists.
(b) It is possible to explicitly define such a function f : RL → R on a Q-linear subspace RL ⊆ R

(called the constructible reals). Thus by (a), it is not possible to prove in ZF + DC that
RL = R. Moreover, it is also not possible to prove, even in ZFC, that RL ̸= R.

In other words, not only can you not define such an f , but you cannot even prove that you cannot
define such an f ! (Exercise: do the two uses of “define” here mean the same thing?)

4.C. Prime ideals and ultrafilters. The following is an important application of Zorn’s lemma:

Theorem 4.21 (prime ideal theorem). Let (R,+, 0, ·, 1) be a commutative rig, i.e., a set equipped
with two commutative, associative, and unital operations, such that · distributes over +, 0. Let
F ⊆ R be a multiplicative submonoid, i.e., closed under ·, 1, and I ⊆ R be an ideal, i.e., closed
under +, 0, and r · (−) for each r ∈ R. Suppose F ∩ I = ∅. Then there is an ideal I ⊆ J ⊆ R which
is prime, meaning R \ J is a multiplicative submonoid, such that F ∩ J = ∅.

Proof. Consider the poset of all ideals I ⊆ J ⊆ R such that F ∩ J = ∅. For a linearly ordered set
C of such J , I ∪

⋃
C is still such an ideal: it clearly contains I and is disjoint from F ; and it is

still an ideal, because {I} ∪ C is linearly ordered and the definition of “ideal” involves being closed
under some finitary conditions. Thus, by Zorn’s lemma there is a maximal such J . It remains to
show that R \ J is a multiplicative submonoid. We have 1 ∈ R \ J , since 1 ∈ F and F ∩ J = ∅.
Now let a, b ∈ R \ J . It is easily verified that

J +Ra := {c+ ra | c ∈ J and r ∈ R}
is an ideal, which contains J (take r = 0) and a (take c = 0 and r = 1), hence by maximality of J ,
c+ ra ∈ F for some c ∈ J , r ∈ R. Similarly, d+ sb ∈ F for some d ∈ J , s ∈ R. Then

F ∋ (c+ ra)(d+ sb)

= cd+ csb+ rad+ rasb

where the first three terms are (multiples of c or d, hence) in J , whence ab ∈ R \ J or else the last
term is also in J , contradicting F ∩ J = ∅.

The set of prime ideals of a commutative rig R is called its spectrum, denoted Spec(R).

Example 4.22. For any rig R, the smallest ideal in R is clearly {0}. This ideal is prime iff 1 ̸= 0
(equivalently by the multiplicative identity law, R ̸= {0}), and the product of any two nonzero
elements of R is nonzero. Recall that a ring R (rig with additive inverses) with this property is
called an integral domain. Any field or subring thereof is clearly an integral domain, e.g., C,R,Q.

Examples of rings which are not integral domains include Z/6Z (in which 2 · 3 = 0), or the ring
of polynomials R[ε] quotiented by the ideal generated by ε2, i.e., the ring of expressions of the form
x+ yε, defined similarly to C, but subject to ε2 = 0 (rather than i2 = −1).

Exercise 4.23. If R is a commutative ring, and I ⊆ R is an ideal, then I is prime iff R/I is an
integral domain. (R/I is a field iff I is a maximal proper ideal, i.e., maximal disjoint from the
multiplicative submonoid {1}, which implies prime by the proof of Theorem 4.21.)

Example 4.24. For any set X and rig R, we have the rig RX of R-valued functions on X, with
pointwise +, ·. If R is such that {0} ⊆ R is prime, then for each x ∈ X, we have a prime ideal

Ix := {f : X → R | f(x) = 0}.
More generally, if we have a rig Rx for each x ∈ X, then we may consider the product rig

∏
x∈X Rx.

26assuming that ZF is consistent to begin with; otherwise everything is provable

51



One intuitive interpretation of the Prime Ideal Theorem 4.21 is that it allows an abstract rig R
to be concretely represented as such a rig of functions, with domain X = Spec(R) and codomain
some “nice” rig (possibly varying with the point x ∈ X). For example:

Corollary 4.25. A commutative ring R embeds into a product of fields iff it has no nonzero
nilpotent elements a ∈ R, meaning elements with an = 0 for some n ≥ 1.

Proof. If f : R →
∏

iKi is a ring homomorphism to a product of fields, and a ∈ R is nilpotent
with an = 0, then f(a)n = f(an) = 0, whence each coordinate of f(a) is 0 (since fields have no
nonzero nilpotent elements); thus if f is injective, then a = 0. Conversely, if R has no nonzero
nilpotent elements, then for any 0 ̸= a ∈ R, we may find a prime ideal I ∈ Spec(R) disjoint from
the multiplicative submonoid {1, a, a2, . . . } (which is disjoint from the ideal {0} by non-nilpotence
of a); then the quotient ring R/I is an integral domain, hence embeds into its field of fractions
KI , such that a remains nonzero in KI . Thus f : R →

∏
I∈Spec(R)(R/I) ↪→

∏
I∈Spec(R)KI given

coordinatewise by the quotient map R↠ R/I works.

Exercise 4.26. Let X be a set, Kx be a field for each x ∈ X, and consider R =
∏

x∈X Kx.

(a) If X is finite, then we have a bijection

X ≅ Spec(R)

x 7→ Ix.

Thus for example, R3 has precisely 3 prime ideals.
(b) If X is infinite, then the above map is not surjective. Thus for example, RN has prime ideals

other than the In. [Consider the ideal I∞ of all sequences f : N→ R converging to 0.]

Exercise 4.27. Let n ∈ N, let A be an n × n matrix with complex entries, and consider the
commutative subring R of the ring of all n× n matrices (which is not itself commutative) generated
by A and scalar multiples of the identity In, i.e., R = {c0In + c1A+ · · ·+ cmA

m | c0, . . . , cm ∈ C}.
(a) If A is diagonalizable, then Spec(R) is in bijection with the set of eigenvalues of A, where

each eigenvalue λ corresponds to the ideal Jλ generated by A−λIn, each quotient ring R/Jλ
is isomorphic to C, and R ≅ C|Spec(R)|.

(b) In general, each prime ideal J ∈ Spec(R) is contained in Jλ for a unique eigenvalue λ; and
the ideals Jλ are themselves maximal, hence prime. Each Jλ contains a finite number kλ of
prime ideals, which are linearly ordered, hence there is a least prime ideal Kλ ⊆ Jλ, such
that R/Kλ ≅ C[ε]/εkλ (Example 4.22); and R is isomorphic to the product of these rings.

[Consider the Jordan normal form of A. The detailed study of eigenvalues in linear algebra is known
as spectral theory; this was the original example of a spectrum of a ri(n)g.]

What about rigs that are not rings? The most important example is

Exercise 4.28. Consider 2 = {0, 1} with + = ∨ = max and · = ∧ = min. For a set X, the product
rig 2X is canonically isomorphic via Example 2.80 to the powerset P(X), with the rig operations

+ = ∪, · = ∩, 0 = ∅, 1 = X.

(For example, the pointwise max of indicator functions χA ∨ χB is χA∪B.)

(a) A subset I ⊆ 2X is closed under “scalar multiplication” r · (−) iff it is downward-closed
under pointwise ≤, i.e., the corresponding subset of P(X) is downward-closed under ⊆.

(b) Thus, I ⊆ P(X) is an ideal iff it is downward-closed and closed under finite unions.
(c) For I ⊆ P(X), the following are equivalent:

(i) I is a prime ideal, i.e., downward-closed, closed under ∪ and contains ∅, and P(X) \ I
is closed under ∩ and contains X.
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(ii) I ⊆ P(X) \ {X} is a maximal subset closed under ∪,∅.
(iii) χP(X)\I : P(X)→ 2 is a rig homomorphism, i.e., preserves ∧,∨, 0, 1.
(iv) χP(X)\I : P(X)→ 2 preserves ∧, 1,¬ (where ¬ denotes Boolean complement).
(v) P(X) \ I is closed under ∩, X and is equal to {X \ A | A ∈ I}, i.e., for every A ⊆ X,

exactly one of A,X \A is in I.
(vi) χP(X)\I : P(X)→ 2 preserves 0, 1 and maps finite disjoint unions to sums:

χP(X)\I(A ⊔B) = χP(X)\I(A) + χP(X)\I(B).

(vii) χP(X)\I : P(X)→ 2 preserves all finite Boolean operations 2n → 2 (∨,¬, XOR, etc.).
For such a prime ideal I ⊆ P(X), the “dual” set P(X) \ I is called an ultrafilter.

(d) Thus, the Prime Ideal Theorem 4.21, in the case of the rig R = P(X), is equivalent to:
(i) Every proper ideal I ⊆ P(X) \ {X} is contained in a prime (or maximal) ideal.

(ii) Every F ⊆ P(X) \ {∅} closed under finite intersections is contained in an ultrafilter.
(iii) Every F ⊆ P(X) with the finite intersection property, meaning that the intersection

of any finitely many sets in F is nonempty, is contained in an ultrafilter.
This special case of the PIT is called the Boolean prime ideal theorem.

Example 4.29. For any set X and x ∈ X, as in Example 4.24, we have an ideal Ix ⊆ 2X of all
functions f : X → 2 vanishing at x, i.e., the indicator functions of all A ⊆ X not containing x.

The corresponding principal ultrafilter Ux := P(X)\Ix consists of all subsets A ⊆ X containing
x. Its indicator function ux := χUx = χP(X)\Ix : P(X) → 2 takes a subset A ⊆ X or “property”
ϕ : X → 2, and returns the truth value of ϕ(x). Exercise 4.28(c)(vii) says that

ux(ϕ ∨ ψ) = (ϕ ∨ ψ)(x) = ϕ(x) ∨ ψ(x), ux(ϕ ∧ ψ) = (ϕ ∧ ψ)(x) = ϕ(x) ∧ ψ(x),

and more generally the truth value of any finite Boolean combination of properties evaluated at x is
the Boolean combination of the truth values.

Exercise 4.30. Show that conversely, if u : P(X)→ 2 preserves arbitrary
∧
,
∨

, then u must be ux
for a unique x ∈ X. [Note that 2 ≅ P(1); cf. Exercise 3.38.]

Thus, general ultrafilters U ⊆ P(X) (or their indicator functions u = χU : P(X)→ 2) may be
seen as “fictitious elements”, which are determined by specifying which subsets A ⊆ X they “belong
to”, in a finitely consistent way, but which need not be realized by any actual elements of X:

Example 4.31. Let X be an infinite set. Then the ideal Ifin ⊆ P(X) of finite subsets (called the
Fréchet ideal) forms a proper ideal, hence is contained in a prime ideal I, whose dual ultrafilter
U = P(X) \ I contains the complement of every finite set. In other words, U is a “fictitious element”
of X which is outside every finite set; we may think of it as a “point at infinity”.

Exercise 4.32. Let X be a set.

(a) A prime ideal I ⊆ P(X) is nonprincipal (i.e., not equal to Ix for any x ∈ X) iff I ⊇ Ifin.
(b) There are infinitely many nonprincipal ultrafilters in P(N), i.e., infinitely many “points at

infinity”. [For example, in Z which is in bijection with N, we may go to “+∞” or “−∞”.]
(c) In fact, there are uncountably many ultrafilters in P(N).

(In fact, it is known that there are precisely 22
ℵ0 ultrafilters in P(N).)

Remark 4.33. As in Theorem 4.20, it is not possible to give any explicit examples of nonprincipal
ultrafilters U ⊆ P(X), nor to prove that this is impossible. Indeed, there is a common generalization
underlying these results. Recall that (the indicator function of) an ultrafilter u : 2X → 2 must be a
group homomorphism with respect to XOR. It turns out that between any “reasonable” groups, such
as R with addition or 2X with XOR, any “definable” group homomorphism must be continuous!27

27Precisely, this uses the Steinhaus–Weil–Pettis theorem, which shows that measurable group homomorphisms
must be continuous, and Solovay’s theorem, which shows that it is consistent with ZF that every set is measurable.
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4.D. Compactness. Despite being somewhat nebulous objects, ultrafilters turn out to be an
extremely versatile tool, that can serve as a fundamental “bridge to infinity”, from which many
other notions of “infinity” and “limit” in mathematics (e.g., topology, compactness) can be derived.
We will spend the rest of this section on applications of Choice via this route.

Recall (see Theorem 4.13) that a general intuition behind many applications of Choice is: “finitary,
finitely consistent” constraints may be simultaneously satisfied. The following makes this precise:

Definition 4.34. Let X be a set, A ⊆ P(X) be an arbitrary family of subsets or “properties”. We
call X with the family A compact if every C ⊆ A with the finite intersection property (Exercise 4.28)
must itself have nonempty intersection. In other words, if C is a family of “finitely consistent”
constraints from A, then we may find x ∈

⋂
C simultaneously satisfying all of them.28

Example 4.35. For an arbitrary set X, consider the constraints Cx := X \ {x} of being ̸= x for
each x ∈ X. If X is infinite, then any finitely many Cx0 , Cx1 , . . . , Cxn−1 have nonempty intersection;

but clearly
⋂

x∈X Cx = ∅. Thus, A = {Cx | x ∈ X} is not compact.29

Example 4.36. Let I, Y be sets and X := Y I . For each i ∈ I and y ∈ Y , we may impose the
constraint Ci,y := {f : I → Y | f(i) = y}. If A is the set of all such Ci,y, and C ⊆ A is a subset with
the finite intersection property, then that means C cannot contain two Ci,y, Ci,y′ with y ̸= y′ (since
a function f cannot map i to both y and y′). We may then find f ∈

⋂
C as follows: fix any g ∈ X

(which is possible, or else the finite intersection of ∅ ⊆ C would be empty); now for any i ∈ I such
that some Ci,y is in C, put f(i) := y for the unique such y; else put f(i) := g(i). Thus A is compact.

This also works more generally for a family of sets (Yi)i∈I and X :=
∏

i∈I Yi.
30

Example 4.37. Take X :=
∏

i∈I Yi as above, but Ci,y := {f : I → Y | f(i) ̸= y} for i ∈ I and
y ∈ Yi. If each Yi is finite, then A := {Ci,j | i ∈ I and y ∈ Yi} is compact, since if C ⊆ A has the
finite intersection property, then for each i ∈ I, there must be at least one yi ∈ Yi such that Ci,y ̸∈ C
(or else

⋂
y∈Yi

Ci,y = ∅); we may then find f ∈
⋂
C taking these values f(i) = yi. But if some

Yi is infinite, then as in Example 4.35, the constraints Ci,y for each y ∈ Yi are finitely consistent
(assuming X ̸= ∅) but cannot all be satisfied. So A is compact iff (X = ∅ or) each Yi is finite.

Theorem 4.38 (Alexander subbasis lemma). Let X be a set, A ⊆ P(X) be a family of subsets. If
A is compact, then so is the set B of finite unions of sets in A.31

Proof. Let C ⊆ B have the finite intersection property. Then there is an ultrafilter C ⊆ U ⊆ P(X),
i.e., χU : P(X)→ 2 preserves finite ∪,∩ and maps every C ∈ C to 1. Since every C ∈ C is a finite
union of sets in A, it follows that there is C ⊇ A ∈ A such that χU(A) = 1, i.e., A ∈ U . Thus⋂
C ⊇

⋂
(A ∩ U) ̸= ∅, since A ∩ U ⊆ A has the finite intersection property (since U does).

Corollary 4.39 (de Bruijn–Erdős). Let G ⊆ X2 be a graph, k ∈ N. Suppose every finite subgraph
F ⊆ G has a k-coloring, i.e., f : X → k such that ∀(x, y) ∈ F (f(x) ̸= f(y)). Then so does G.

Proof. Consider kX as in Example 4.37, and note that the set of k-colorings of G is

{f : X → k | ∀i ∈ k, (x, y) ∈ G (f(x) ̸= i or f(y) ̸= i)} =
⋂

i∈k,(x,y)∈G(Cx,i ∪ Cy,i);

the family of these conditions C := {Cx,i ∪ Cy,i | i ∈ k, (x, y) ∈ G} has the finite intersection
property, since for any finitely many Cx0,i0 ∪ Cy0,i0 , . . . , Cxn−1,in−1 ∪ Cyn−1,in−1 ∈ C, the finite
subgraph F := {(x0, y0), . . . , (xn−1, yn−1)} ⊆ G has a k-coloring.

28If A is closed under arbitrary intersections and finite unions, then this means A forms the closed sets of a compact
topology on X. Note that clearly, A is compact iff its closure under arbitrary intersections is (contrapositive: to find a
finite subcover of an open cover, we may assume the open sets come from a given basis for the topology).

29In other words, the discrete topology on an infinite set is not compact.
30In other words, the product of the cofinite topologies on each Yi is compact.
31In other words, to check compactness of a topology, it suffices to consider open covers from a given subbasis.
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Exercise 4.40. Hall’s marriage theorem states that for two finite sets X,Y and R ⊆ X × Y , if

(∗) for every n ∈ N and A ⊆ X with n elements, R[A] ⊆ Y has at least n elements,

then there is an injection f : X ↪→ Y with graph contained in R.

(a) Taking Hall’s marriage theorem as a black box, prove that the same statement holds without
requiring X,Y to be finite, but still requiring that for each x ∈ X, R[{x}] ⊆ Y is finite.

(b) Give a counterexample when this last assumption is also dropped.

Exercise 4.41. Let X be a set.

(a) Prove, using the Alexander subbasis lemma and no other applications of Choice, that there
is a linear order < ⊆ X2.

(Recall from Proposition 4.1 that full Choice is equivalent to well -orderability. Since
the Boolean prime ideal theorem is strictly weaker than full Choice, it follows that linear
orderability is strictly weaker than well-orderability. Nonetheless, it is also not possible to
explicitly define a linear ordering of e.g., P(R).)

(b) Prove that more generally, every partial order on X extends to a linear order.

Exercise 4.42. Let K be a finite field, V be a K-vector space. Prove (without using full Choice)
that for every vector subspace W ⊆ V and linear transformation f : W → K, there is an extension
of f to a linear transformation V → K. Conclude that V embeds into a power of K.

Exercise 4.43. For a set of functions X =
∏

i∈I Yi and the sets Ci,y as in Example 4.37:

(a) Every finite Boolean combination of the sets Ci,y can be written as an intersection of finite
unions of them.

(b) Thus, every family C of such finite Boolean combinations with the finite intersection property
has nonempty intersection, assuming each Yi is finite.

This should give a slightly more convenient way of expressing the last few examples: we may simply
write down the conditions we want using arbitrary (finite) Boolean connectives, without worrying
about making them into finite unions. (Statement (b) is essentially the compactness theorem
for finitary propositional logic, or Tychonoff’s theorem for finite sets.)

The following generalizes Example 4.37 by allowing arbitrary constraints to be imposed on each
coordinate, as long as those constraints are themselves compact:

Theorem 4.44 (Tychonoff). Let I be a set, and for each i ∈ I, let Yi be a set equipped with a
family of subsets Ai ⊆ P(Yi) which is compact. Then X :=

∏
i∈I Yi equipped with the family of all

π−1
i [C] = {y⃗ = (yj)j∈I ∈ X | yi ∈ C}, i ∈ I, C ∈ Ai,

where πi : X → Yi is the coordinate projection, is compact. Thus so is the family of all finite unions
of such π−1

i [C] (or more generally, arbitrary intersections of such finite unions).32

Proof. Let C ⊆ P(X) be a set of such π−1
i [C] with the finite intersection property. For each i, let

Ci := {C ∈ Ai | π−1
i [C] ∈ C};

then C =
⋃

i∈I{π
−1
i [C] | C ∈ Ci}, and so⋂

C =
⋂

i∈I
⋂

C∈Ci π
−1
i [C] =

⋂
i∈I π

−1
i [
⋂
Ci].

Each Ci ⊆ Ai has the finite intersection property, since for finite F ⊆ Ci, we have π−1
i [
⋂
F ] =⋂

C∈F π
−1
i [C] ̸= ∅ since each π−1

i [C] ∈ C which has the finite intersection property. Thus choosing

yi ∈
⋂
Ci for each i (using Choice again), we have y⃗ ∈

⋂
i∈I π

−1
i [
⋂
Ci] =

⋂
C.

32In other words, a product of compact topological spaces is compact.
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Example 4.45. For finite sets Yi, the full powerset Ai = P(Yi) (or just the complements of
singletons) is compact; Theorem 4.44 recovers Example 4.37 in this case.

Exercise 4.46. Prove the original Prime Ideal Theorem 4.21, for an arbitrary rig R, using
Tychonoff’s theorem for 2R and no other applications of Choice. Thus, the following are equivalent
(over ZF): the PIT for arbitrary rigs; the Boolean PIT (for powersets); the Alexander subbasis
lemma; Tychonoff’s theorem for products of finite sets; Tychonoff’s theorem for powers of 2.

Exercise 4.47. On the other hand, using the full Tychonoff’s theorem, prove the full Axiom of
Choice. [Given nonempty Xi, let Yi := Xi ⊔ {∞i} where ∞i ̸∈ Xi, equipped with the condition Xi.]

Example 4.48. Consider Y = [0, 1], equipped with A = {[0, r] | r ∈ [0, 1]} ∪ {[s, 1] | s ∈ [0, 1]}.
This is easily seen to be compact: given C ⊆ A with the finite intersection property, for each
[0, r], [s, 1] ∈ C, we must have s ≤ r (or else [0, r] ∩ [s, 1] = ∅); thus sup[s,1]∈C s ∈

⋂
C. Since a

union of two such intervals [0, r] ∪ [s, 1] is the complement of the open interval (r, s), applying the
Alexander subbasis lemma to A reproves the Heine–Borel Theorem 3.35 (in contrapositive form).

Now for any set I, applying Tychonoff’s Theorem 4.44 yields that [0, 1]I , with the conditions

{y⃗ ∈ [0, 1]I | yi ≤ r}, {y⃗ ∈ [0, 1]I | yi ≥ s}
(or finite unions thereof), is compact.

Similarly to how 4.39–4.42 (secretly) used Tychonoff’s theorem for finite sets to derive existence
results for “objects made of finitary data” (e.g., graph colorings using finitely many colors), the
compactness of [0, 1]I has myriad applications concerning “objects made of real-valued data”, e.g.,
solutions to differential equations, or various kinds of geometric objects. Many such applications
can be found in functional analysis (e.g., the Hahn–Banach and Banach–Alaoglu theorems), but
would take us too far from the focus of this course. We will consider a particular family of such
applications with a more set-theoretical flavor in the following subsection.

4.E. Measures and geometrical paradoxes.

Theorem 4.49 (Banach). Let G = (G,+, 0,−) be an abelian group. There exists a function
µ : P(G)→ [0, 1] such that

µ(G) = 1,(i)

µ(A ⊔B) = µ(A) + µ(B) for disjoint A,B ⊆ G,(ii)

µ(A+ g) = µ(A) for A ⊆ G, g ∈ G,(iii)

called an invariant finitely additive probability measure on G. (Here, A+g := {a+g | a ∈ A}.)

Proof. The set of such µ is the subset of [0, 1]P(G) defined by the conditions

µ(G) ≥ 1,(i) {
µ(A) ≤ r or µ(B) ≤ s or µ(A ⊔B) ≥ r + s ∀A,B ⊆ G, A ∩B = ∅, r, s ∈ [0, 1],

µ(A) ≥ r or µ(B) ≥ s or µ(A ⊔B) ≤ r + s ∀A,B ⊆ G, A ∩B = ∅, r, s ∈ [0, 1],
(ii) {

µ(A+ g) ≤ r + ε or µ(A) ≥ r ∀A ⊆ G, g ∈ G, r ∈ [0, 1], ε > 0,

µ(A+ g) ≥ r or µ(A) ≤ r + ε ∀A ⊆ G, g ∈ G, r ∈ [0, 1], ε > 0.
(iii)

Indeed, e.g., the first line of (ii) says “µ(A) > r and µ(B) > s =⇒ µ(A ⊔B) ≥ r + s”; imposing
this for all r, s ∈ [0, 1] is easily seen to imply µ(A ⊔ B) ≥ µ(A) + µ(B). Similarly for the other
conditions. Since each of these conditions is a finite disjunction (= union) of closed inequalities

involving a single “coordinate” of the “tuple” µ ∈ [0, 1]P(G), by compactness it suffices to verify that
any finitely many of these conditions may be satisfied at once.
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To do so, we will show that for any finite F ⊆ G and ε > 0, we may find a µ : P(G) → [0, 1]
obeying (i) and all of (ii) (meaning µ(A ⊔B) = µ(A) + µ(B)), and obeying (iii) for all A ⊆ G, all
r ∈ [0, 1], all g ∈ F , and the given ε. Note that (iii) for a given A, g, ε (and all r) is equivalent to

|µ(A+ g)− µ(A)| ≤ ε.(iii′)

Thus considering a single ε is enough, since given finitely many, we may take their minimum.
Now to find µ: let 1/ε ≤ N ∈ N. We define the measure µ(A) of A ⊆ G by sampling the first few

integer linear combinations of the group elements in F , and counting what proportion lands in A:

µ(A) :=

∣∣{(af )f∈F ∈ NF
∣∣ ∑

f∈F aff ∈ A
}∣∣

N |F | .

It is rather obvious that µ(G) = 1 and µ(A ⊔B) = µ(A) + µ(B), so (i) and (ii) hold. To check (iii′):
note that for g ∈ F ,

µ(A+ g) =

∣∣{(af )f∈F ∈ NF
∣∣ ∑

f∈F aff ∈ A+ g
}∣∣

N |F |

=

∣∣{(af )f∈F ∈ NF
∣∣ ∑

f∈F aff − g ∈ A
}∣∣

N |F |

=

∣∣{(bf )f∈F ∈ NF − e⃗g
∣∣ ∑

f∈F bff ∈ A
}∣∣

N |F | ,

where b⃗ = a⃗− e⃗g is a⃗ with the gth coordinate decreased by 1 (e⃗g ∈ NF is the “gth basis vector”).

Since the former set counted by µ(A) and this set counted by µ(A+ g) agree on all N |F |−1(N − 1)

elements of NF ∩ (NF − e⃗g), their cardinalities can differ by at most N |F |−1, and so

|µ(A+ g)− µ(A)| ≤ N |F |−1/N |F | = 1/N ≤ ε.

Remark 4.50. Note that condition (ii) implies

µ(∅) = µ(∅) + µ(∅) =⇒ µ(∅) = 0,(iv)

A ⊆ B =⇒ µ(B) = µ(A ⊔ (B \A)) = µ(A) + µ(B \A) ≥ µ(A).(v)

Example 4.51. If G is a finite group (not necessarily abelian), then condition (iii) above implies
that each singleton {g} ⊆ G (is a translate of {0}, hence) has the same measure µ({g}); while
conditions (i), (ii) imply that these measures have to sum to 1. Thus µ({g}) = 1/|G|, and so by (ii),

µ(A) = |A|/|G|

is the unique finitely additive probability measure on G. Thus for infinite groups G, we may think
of µ as a way of defining a notion of “proportion” for each subset of G.

Example 4.52. Consider G = Z (with the usual addition). Again, every singleton {g} must have
the same measure; but since for any N ∈ N, we may find N disjoint singletons, it follows that
µ({g}) ≤ 1/N , and thus µ({g}) = 0. By finite additivity, any finite A ⊆ Z must have measure 0.

What about infinite A ⊆ Z? For example, if A = 2Z is the even integers, then since A⊔(A+1) = Z,
both A and A+ 1 must have measure 1/2, which perhaps agrees with our intuition that “half of the
integers are even, the other half are odd”. But for e.g.,

A =
⋃

n∈N[102n, 102n+1) = [1, 10) ∪ [100, 1000) ∪ [10000, 100000) ∪ · · · ,

A appears to include a lot of the first 10 naturals, then very few of the first 100, then a lot of the
first 1000, etc. There is no constraint that uniquely determines the “proportion” of this A; the
measure µ returned by Theorem 4.49 merely chooses some arbitrary number, for this A and all
other sets at once, so that these numbers are all consistent with each other.
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Exercise 4.53. Show that in fact, there is an invariant finitely additive probability measure
µ : P(Z)→ [0, 1] such that µ(N) = 0. [Take an existing measure ν, and try µ(A) := ν(A \ N).]

Exercise 4.54. By Exercise 4.28(c)(vi), an ultrafilter P(Z)→ 2 ⊆ [0, 1] obeys all the axioms of µ
above except for translation-invariance. Show that this is unavoidable.

Corollary 4.55. For any abelian group G, it is not possible to find a finite partition

G = A0 ⊔ · · · ⊔Am−1 ⊔B0 ⊔ · · · ⊔Bn−1

such that A0, . . . , Am−1 can be slid around and reassembled into all of G, as can B0, . . . , Bn−1:

G = (A0 + g0) ⊔ · · · ⊔ (Am−1 + gm−1) = (B0 + h0) ⊔ · · · ⊔ (Bn−1 + hn−1).

Proof. Let µ be an invariant finitely additive probability measure on G. Then the above give

1 = µ(G) = µ(A0) + · · ·+ µ(Am−1) + µ(B0) + · · ·+ µ(Bn−1)

= µ(A0 + g0) + · · ·+ µ(Am−1 + gm−1) + µ(B0 + h0) + · · ·+ µ(Bn−1 + hn−1)

= µ(G) + µ(G) = 2.

Example 4.56. It is not possible to partition the plane R2 into finitely many pieces, and slide
them around using translations, in order to make two copies of the plane.

Example 4.57. It is not possible to take the unit circle S1 = {(x, y) | x2 + y2 = 1} ⊆ R2, partition
it into finitely many pieces, and slide the pieces around using translations and rotations in order to
make two disjoint unit circles. To see this: the translations are not really relevant; it is enough to
consider rotations (to make two overlapping unit circles), i.e., we treat S1 as a group under rotation
(as the complex numbers eiθ under ·, or isomorphically as the quotient group R/Z under +).

Exercise 4.58.

(a) Show that it is also not possible to take the right half of the unit circle S1, partition it into
finitely many pieces, and rotate them to cover the full S1.

(b) Show that it is not possible to take the unit square [0, 1]2 ⊆ R2, partition it into finitely
many pieces, and translate them to form two disjoint unit squares. [Consider a torus.]

Exercise 4.59. Which groups G admit an invariant finitely additive probability measure?

(a) Show that if N ⊆ G is a normal subgroup, and G has an invariant finitely additive probability
measure, then so does G/N .

(b) Show that if H ⊆ G is a subgroup, and G has an invariant finitely additive probability
measure, then so does H. [Given A ⊆ H, measure a union of copies in the cosets of H.]

(c) Show that if H ⊆ G is a subgroup of finite index (i.e., H has only finitely many cosets), and
H has an invariant finitely additive probability measure, then so does G.

(d) Conclude that Example 4.57 remains valid if we allow reflections as well as rotations.
(e) (Følner) Show that G has an invariant finitely additive probability measure if for every finite

F ⊆ G and ε > 0, there is a finite ∅ ≠ D ⊆ G such that for every g ∈ F , gD agrees with D
except on ε|D| elements. [Imitate the proof of Theorem 4.49.]

Such groups G are known as the amenable groups (pronounced a-mean-able, a bad pun), and
are known to be closed under many other group-theoretic constructions, such as direct product,
extension, and increasing union.

Why would anyone doubt Example 4.57, say? Recall one of the first “paradoxes” of cardinality:

Example 4.60. There are bijections N ≅ Z ≅ 2Z ≅ 2Z + 1 ≅ Q ≅ · · · .

A trivial rephrasing is that
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Example 4.61. There is a countable partition

Q = A0 ⊔A1 ⊔ · · · ⊔B0 ⊔B1 ⊔ · · ·
so that A0, A1, . . . can be slid around to form another copy of Q, as can B0, B1, · · · . Just enumerate
Q, and take the even and odd singletons. Of course Q here can be any countably infinite group.

Now Q is countable, so perhaps it’s unsurprising that countable partitions can “ruin” its size;
but this in turn easily yields

Theorem 4.62 (Vitali). There is a countable partition of R (or of S1) into countably many pieces,
so that they may be slid around to form two disjoint copies of R (or S1).

Proof. Consider the coset equivalence relation of the subgroup Q ⊆ R:

x ∼ y :⇐⇒ y − x ∈ Q.
Let C ⊆ R choose exactly one element from each equivalence class, i.e., each coset of Q. Then

+ : Q× C −→ R
is a bijection, such that the cosets of Q on the right correspond to the “cross-sections” Q× {c} on
the left; in other words, we have decomposed R into C-many copies of Q, such that in each copy,
translation by Q acts independently. Now the partition from the last example yields a partition

Q× C = (A0 × C) ⊔ (A1 × C) ⊔ · · · ⊔ (B0 × C) ⊔ (B1 × C) ⊔ · · ·
such that these pieces may be translated by elements of Q in the first coordinate to form two copies
of Q× C. The bijection + thus takes this to a partition

R = (A0 + C) ⊔ (A1 + C) ⊔ · · · ⊔ (B0 + C) ⊔ (B1 + C) ⊔ · · ·
which can be moved around to form two copies of R.

The proof for S1 is the same, using any countably infinite subgroup, e.g., Q/Z ⊆ R/Z ≅ S1 (the
rotations by rational multiples of 2π).

Exercise 4.63. In fact, S1 may be rearranged into countably many copies of S1.

It follows that the proof of Corollary 4.55 must break if we try to apply it to these countable
partitions. Namely, there cannot be an invariant countably additive probability measure µ : P(R)→
[0, 1] or µ : P(S1)→ [0, 1] (which was the original application of Vitali). For R, this is not surprising,
since one usually understands its “length” to be infinite; the (non-constructive) existence of Banach’s
4.49 finitely additive notion of finite “length” is perhaps the real surprise. But for S1, we have
the “usual” notion of finite arc length (namely the Lebesgue measure, which can be normalized by
dividing by 2π), which makes sense for “nice” subsets of S1 such as intervals; Vitali’s theorem says
that there is no way to consistently extend it to arbitrary subsets of S1.

Exercise 4.64. Show that the unit disk B2 = {(x, y) | x2 + y2 ≤ 1} ⊆ R2 may be partitioned into
countably many pieces which can be slid around (using translations and rotations) into two disjoint
unit disks. [Take pie slices, with some ad-hockery to deal with the center point.]

It turns out that in dimensions > 2, there cannot even be a finitely consistent notion of “volume”:

Theorem 4.65 (Banach–Tarski). Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} be the unit sphere.
There is a way to partition S2 into finitely many subsets, slide those subsets around using translations
and (3D) rotations, and rearrange them into two disjoint unit spheres.

(As in the previous exercises, the same then holds for the ball B3 = {(x, y, z) | x2 + y2 + z3 ≤ 1};
and in fact we may make infinitely (indeed uncountably) many copies of B3 from one.)

The main reason behind the stark difference with S1 is that the group SO(3) of 3D rotations is
highly nonabelian. In fact, in some sense, it is as complicated a group as possible:
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Definition 4.66. The free group on two generators F2 = ⟨a, b⟩ consists of all finite strings
(including empty) of the four symbols a, b, a−1, b−1, such that no letter occurs consecutively with its
inverse. Two such strings are multiplied by concatenation followed by cancelling inverses: e.g.,

(aba−1b����b)(b−1ab) = aba−1bab.

In other words, F2 is obtained by “declaring there to be two elements a, b, and taking all elements
built from those, with no relations between them except those implied by the group axioms”.

Theorem 4.67 (Hausdorff). There are two orthogonal matrices A,B ∈ SO(3) obeying no relations
not implied by the group axioms, i.e., such that we have an injective group homomorphism

F2 −→ SO(3)

an0bn1an2 · · · 7−→ An0Bn1An2 · · · .
This is the key technical ingredient underlying the Banach–Tarski paradox, and its proof involves

numerical computations with matrices: for example, one could take the rotations about the x- and
y-axes, both by the angle arcsin(35) in a 3-4-5 right triangle, yielding matrices with rational entries.
Given this theorem, which we will not prove, the proof of Theorem 4.65 follows the same strategy as
Theorem 4.62: first we do the finite partitioning and rearranging in the group F2; then we transfer
it to the orbits of the action on S2 via the Axiom of Choice.

Theorem 4.68. There is a finite partition F2 = P ⊔Q ⊔R ⊔ S such that F2 = P ⊔ aQ = R ⊔ bS.

Proof.

∅ a aa

ab

ab−1

b ba

bb

ba−1

a−1

a−1b

a−1a−1

a−1b−1

b−1 b−1ab−1a−1

b−1b−1

P = {a · · · }{a−1 · · · } = Q

S = {b−1 · · · } ∪ {bn | n ∈ N}

R = {b · · · a±1 · · · }

Proof sketch of Theorem 4.65. We identify F2 with a subgroup of SO(3) via Theorem 4.67. Each
non-identity rotation I3 ̸= T ∈ SO(3) fixes only two points on S2. Thus, there are countably many
points F ⊆ S2 such that every 1 ̸= T ∈ F2 moves every point in S2 \ F ; we will prove the weaker
statement that S2 \ F can be countably partitioned and then rearranged into two copies of itself.
As in the proof of Theorem 4.62, let C ⊆ S2 \ F choose exactly one point from each F2-orbit. Then

S2 \ F = PC ⊔QC ⊔RC ⊔ SC
is the desired partition; indeed, S2 \ F = PC ⊔ aQC = RC ⊔ bSC.

For much more on Banach–Tarski and related “geometrical paradoxes”, including the details we
omitted above, see [S. Wagon, The Banach–Tarski Paradox, 1985].
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4.F. Ultralimits and ultraproducts. We close by sketching some more sophisticated applications
of ultrafilters. The reader is forewarned that some comfort with abstraction is assumed here.

Exercise 4.69 (assuming you know topology). We will show that (as promised in Section 4.D)
ultrafilters can be used as a foundation for developing topology.

The key idea is that, as in Example 4.31, we may think of an ultrafilter U ⊆ P(I) on a set I as a
“point of I at infinity”, which is “declared to be in A” for each A ∈ U . For example, if I = Z, then
an ultrafilter containing {N,N + 1,N + 2, . . . } (which clearly has the finite intersection property) is
a “point at +∞”, while an ultrafilter containing {−N,−N− 1,−N− 2, . . . } is a “point at −∞”.

Thus, given a topological space X, an I-sequence x⃗ ∈ XI , and a point y ∈ X, we write

lim
U
x⃗ = lim

i→U
xi = x :⇐⇒ ∀ open V ∋ y, ∃A ∈ U ∀i ∈ A (xi ∈ V ) (∗)

⇐⇒ ∀ open V ∋ y, x⃗−1(V ) ∈ U .

(a) Verify that the two conditions above are indeed equivalent.
(b) Show that V ⊆ X is open iff for every set I, ultrafilter U ⊆ P(I), I-sequence x⃗ ∈ XI , and

y ∈ V , if limU x⃗ = y, then there is A ∈ U such that for all i ∈ A, xi ∈ V .
(c) Thus, F ⊆ X is closed iff it is closed under limits, i.e., for every set I, ultrafilter U ⊆ P(I),

I-sequence x⃗ ∈ F I , and y ∈ X, if limU x⃗ = y, then y ∈ F .
(d) Show that a map f : X → Y to another topological space is continuous iff it preserves limits

at every ultrafilter: if limU x⃗ = y in X, then limU f(x⃗) = f(y) in Y .
(e) Show that X is compact iff for every set I, ultrafilter U ⊆ P(I), and I-sequence x⃗ ∈ XI ,

there is at least one limit limU x⃗.
(f) Show that X is Hausdorff iff for every set I, ultrafilter U ⊆ P(I), and I-sequence x⃗ ∈ XI ,

there is at most one limit limU x⃗.
(g) Give a direct proof of Tychonoff’s Theorem 4.44 using ultrafilter limits (and not using the

Alexander subbasis lemma), thereby showing that products of compact Hausdorff spaces
are still compact (and Hausdorff), using only the PIT and no other applications of Choice.

(h) Verify that for x⃗ ∈ [0, 1]I and an ultrafilter U ∈ P(I), limU x⃗ may be computed as either of

lim inf
i→U

xi := sup
A∈U

inf
i∈A

xi, lim sup
i→U

xi := inf
A∈U

sup
i∈A

xi.

(i) Verify that for x⃗ ∈ 2I and (the indicator function of) an ultrafilter u : 2I → 2, equipping 2
with the discrete topology, limu x⃗ is none other than u(x⃗).

(j) Verify that for x⃗ ∈ XI and a principal ultrafilter Ui = {A ⊆ I | i ∈ A} (recall Example 4.29),
we have limUi x⃗ = xi (“reflexivity”).

(k) Verify that for x⃗ ∈ XI , y⃗ ∈ XJ , and ultrafilters V ⊆ P(J) and Uj ⊆ P(I) for each j ∈ J ,

∀j ∈ J
(

lim
i→Uj

xi = yj

)
and lim

j→V
yj = z =⇒ lim

i→W
xi = z

where W ⊆ P(I) is the ultrafilter whose indicator function 2I → 2 is the pointwise limV of
the indicator functions of the Uj (“transitivity”).

(l) In particular, by taking I = X and Ux above to be principal ultrafilters, show that the
behavior of arbitrary ultrafilter limits limj→V yj is completely determined by limits of the
form limx→W x where W ⊆ P(X).

(m) Show that for any set X and ternary relation “limU x⃗ = y” between arbitrary ultrafilters U
on arbitrary index sets I, I-sequences x⃗ ∈ XI , and points y ∈ X, such that (j), (k), and (l)
hold, then the collection of sets V ⊆ X obeying (b) forms the open sets of a topology such
that (∗) recovers the given limU relations. Thus in principle, it is possible to develop all of
topology by taking ultrafilter limit as the primitive notion (but in practice quite painful).

[Hint: you should be making liberal use of the Boolean PIT throughout.]
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Exercise 4.70. Let again U ⊆ P(I) be an ultrafilter on an index set I. We can take not only
U-limits of real numbers or points in a topological space, as in the preceding exercise; we can even
take “limits” of graphs or other (first-order) structures!

Let Xi be a set for each i ∈ I. The ultraproduct of these sets at U is their “lim inf”:∏
i→U

Xi := lim−→
A∈U

∏
i∈A

Xi.

The notation lim−→ (known as a direct limit) means: take the disjoint union of these products (over

all A ∈ U ; note that there is no need to disjointify), and quotient by the equivalence relation∏
i∈AXi ∋ x⃗ ∼U y⃗ ∈

∏
j∈BXj :⇐⇒ ∃U ∋ C ⊆ A ∩B

(
x⃗|C = y⃗|C ∈

∏
k∈C Xk

)
.

Thus, concretely,
∏

i→U Xi consists of equivalence classes of functions with domain in U , two such
functions being equivalent iff they agree on some common subset of their domains which is still in U .

(a) Verify that this is indeed an equivalence relation.
(b) When U is the principal ultrafilter at some i ∈ I,

∏
j→U Xj is in canonical bijection with Xi.

(c) When Xi = X is constant, the ultraproduct
∏

i→U X is called an ultrapower, usually
denoted XU . We then have a canonical map X → XU , taking x to the equivalence class of
the constant tuple (x)i∈I ∈ XI , which is injective, called the diagonal embedding.

(d) When I = Xi = N, and U ⊆ P(N) is a nonprincipal ultrafilter, NU is uncountable. [For
example, the equivalence class of id : N→ N is outside the image of the diagonal embedding.]

Now suppose that each Xi is also equipped with a graph (i.e., binary relation) Ri ⊆ X2
i . We will

abuse notation by freely identifying Ri with its indicator function X2
i → 2, and similarly U with its

indicator function 2I ≅ P(I)→ 2. Define the ultraproduct graph
∏

i→U Ri on
∏

i→U Xi by∏
i→U Ri : (

∏
i→U Xi)

2 −→ 2

([x⃗], [y⃗]) 7−→ U((Ri(xi, yi))i∈I).

(e) When U ⊆ P(N) is a nonprincipal ultrafilter, and Ri = (<) ⊆ N2 for each i, the ultrapower
graph (<U ) :=

∏
i→U(<) ⊆ (NU)2 is still a linear order with a least element; and the

diagonal embedding N → NU is an order-isomorphism with its image, which is an initial
segment of (NU , <U ). Thus, [id] ∈ NU is strictly above this initial segment.

(f) More generally, if each (Xi, <i) is a linear order, then so is (
∏

i→U Xi,
∏

i→U <i).

This remarkable fact is not at all specific to “linear order”:

(g) ( Loś’s33 theorem) Let ϕ(x0, . . . , xn−1) be a property of n points in a graph (X,R), which is
expressed using the symbols =, R, connectives ∧,∨,¬, and quantifiers ∀, ∃. For example,

ϕ(x0, x1) := “R(x0, x1) ∧ ¬∃x2 (R(x0, x2) ∧R(x2, x1))”

says that x1 is an immediate successor of x0. Then for any graphs ((Xi, Ri))i∈I , the truth
value of ϕ in the ultraproduct graph (

∏
i→U Xi,

∏
i→U Ri) is given by

ϕ : (
∏

i→U Xi)
n −→ 2

([x⃗0], . . . , [x⃗n−1]) 7−→ U((ϕ(x0i , . . . , x
n−1
i ))i∈I).

[Induct on the syntactic expression ϕ, in the manner of Example 3.50.]
(h) In particular, for n = 0, if ϕ is a property of a graph not depending on any free variables,

then
∏

i→U Xi satisfies ϕ iff the set of i such that Xi satisfies ϕ is in U .
(i) If each (Xi, Ri) satisfies the axioms of ZFC (with Ri as the membership relation), then so

does (
∏

i→U Xi,
∏

i→U Ri). Show that if (X,R) is such a model of ZFC, we may take an
ultrapower to get a model which (still satisfies Foundation but) is ill-founded.

33pronounced “wosh”
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More generally still, there is no reason to restrict to a single binary relation. Suppose each Xi is
equipped with some family of relations Ri, Si, . . . of specified finite arities (the same across all i).
Then  Loś’s theorem holds by exactly the same proof, where now the property ϕ may of course talk
about all of the relations. We may also handle operations of finite arities, e.g., each Xi might be
an abelian group (with operations + of arity 2, 0 of arity 0, and − of arity 1); the simplest way,
given we already know how to deal with relations, is to represent operations via their graphs, which
amounts to defining e.g., a binary operation + on the ultraproduct via

[x⃗0] + [x⃗1] := [(x0i + x1i )i∈I ].

We will not bother with the details, and will freely use operations and/or relations as needed.

(j) Suppose each Xi is a ring or a field, respectively. Verify that so will be
∏

i→U Xi.
(k) Suppose each Xi is a field of characteristic ≥ p or 0, or more generally, this is true for a set

of i in U . Verify that so will be
∏

i→U Xi.
(l) Conclude that if U ⊆ P(N) is a nonprincipal ultrafilter, and the Xi are finite fields of

characteristics →∞, then
∏

i→U Xi is a field of characteristic 0.
(m) Verify that if each Xi is algebraically closed, then so is

∏
i→U Xi.

(n) By well-known results of field theory, (i) any two uncountable algebraically closed fields of
the same characteristic and cardinality are isomorphic; (ii) there is an algebraically closed
field of each characteristic and uncountable cardinality.
Using these results, show that if a property ϕ of fields (finitely expressible as in  Loś’s
theorem) is true in every algebraically closed field of finite characteristic, then it is true in C.
[Some cardinal arithmetic is needed; see Section 5.E.]

Now, we focus on the case I = N and an ultrapower XU for a fixed nonprincipal ultrafilter U ⊆ P(N).
Then for any n-ary relation R ⊆ Xn, we have a corresponding ultrapower relation RU ⊆ (XU)n;
similarly for n-ary functions. In particular, for n = 0, a single element x ∈ X regarded as a 0-ary
function has ultrapower xU given by the equivalence class of the constant function [x]; in other
words, we may conveniently write the diagonal embedding X → XU as x 7→ xU .

(o) Show that for any sequence of nonempty sets X ⊇ C0 ⊇ C1 ⊇ · · · , we have ∅ ≠
⋂

nC
U
n ⊆ XU .

(p) For example, ∅ ̸=
⋂

n[n,∞)U ⊆ RU (cf. (e)); elements of this set are called positive infinite.
(q) Similarly, elements of

⋂
n(−∞,−n]U ⊆ RU are negative infinite. Elements of RU which

are not positive or negative infinite are finite; these are precisely elements of
⋃

n[−n, n]U .
(r) Similarly, elements of

⋂
n(−1/n, 1/n)U ⊆ RU are infinitesimal; these are finite.

(s) By  Loś’s theorem, RU is an ordered field, with the operations +U ,−U , ·U , /U . Verify that

infinitesimal +U infinitesimal = infinitesimal,

finite +U finite = finite,

finite ·U infinitesimal = infinitesimal,

finite ·U finite = finite.

Thus, the finite elements of RU form a subring, in which the infinitesimals form an ideal.
Let a ≈ b :⇐⇒ (a−U b infinitesimal) denote the associated coset equivalence relation.

(t) Let f : R→ R and a, b ∈ R. Show that

lim
x→a

f(x) = b ⇐⇒ ∀aU ̸= x ∈ RU (x ≈ aU =⇒ fU (x) ≈ bU ),

f continuous ⇐⇒ ∀x ∈ R ∀y ∈ RU (xU ≈ y =⇒ f(x)U ≈ fU (y)),

f uniformly continuous ⇐⇒ ∀x ∈ RU ∀y ∈ RU (x ≈ y =⇒ fU (x) ≈ fU (y)).

The application of ultrapowers to reason about “infinities” is part of nonstandard analysis.
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5. Cardinality

5.A. Equinumerosity and cardinality.

Definition 5.1. Two sets A,B are equinumerous or have the same cardinality, denoted

A ≅ B,

if there exists a bijection f : A ≅ B.

Remark 5.2. This is a (proper class) equivalence relation on V , since bijections are closed under
composition, inversion, and identity.

The concept of equinumerosity is more fundamental than that of “the cardinality” |A| of a set.
We would like to define the latter to mean any object we can assign to A, in such a way that
equinumerosity indeed means “having the same cardinality”:

|A| = |B| ⇐⇒ A ≅ B.(5.3)

In other words, “cardinality” should be the quotient V/≅. For an equivalence relation on a set,
we can construct the quotient as the set of equivalence classes; but the ≅-equivalence classes will
generally be proper classes. This means that “cardinality”, like “class”, is an informal meta-notion
that does not exist in the universe. So we cannot have sets of cardinals, functions on cardinals, etc.

These issues cannot be avoided in the basic set theory ZF−, but with a little more, we can:

Definition 5.4 (assuming Foundation). The cardinality |A| of a set A is defined using Scott’s
trick 3.185, i.e., as the set of all sets equinumerous with A with minimal rank among all such sets.

Thus, a cardinal κ is a maximal nonempty set of equinumerous sets of equal rank.

Definition 5.5 (assuming Choice). Then in each ≅-equivalence class, there is at least one ordinal;
and among those, we may canonically choose the least one. The cardinality |A| of a set A is the
least ordinal equinumerous with A.

Thus, a cardinal κ is an initial ordinal: one not equinumerous with any strictly smaller ordinal.

Either of these encodings allows to treat cardinals as objects existing in the universe. As with
other coding choices (Sections 2.D and 2.E), the choice of which of these we call “cardinals” is largely
irrelevant for ordinary mathematical practice; all we need to know is that (5.3) holds. Nonetheless,
in the presence of Choice, the initial ordinals representation is somehow much more canonical and
convenient, in the same way that the standard encoding of naturals is well-justified as the canonical
representatives (i.e., Mostowski collapse) of ordinary induction. We therefore adopt the following

Convention 5.6. By default, we assume the cardinality of any well-orderable set to be encoded via
Definition 5.5, as an initial ordinal. (Thus, assuming Choice, cardinal = initial ordinal.)

5.B. Cardinal comparison.

Definition 5.7. A set A injects into another set B, denoted

A ↪→ B,

if there exists an injection f : A ↪→ B.

Remark 5.8. This is a preorder on V , since injections are closed under composition and identity.

Remark 5.9. A ≅ B =⇒ A ↪→ B ↪→ A, since bijections are injections.

It follows from both of these properties that A′ ≅ A ↪→ B ≅ B′ =⇒ A′ ↪→ B′, justifying

Definition 5.10. For two cardinals |A|, |B|,
|A| ≤ |B| :⇐⇒ A ↪→ B.

This is a preorder on the class of all cardinals (however we choose to encode them).
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Theorem 5.11 (Schröder–Bernstein). For any two sets A,B, if A ↪→ B ↪→ A, then A ≅ B.

Proof. Let f : A ↪→ B and g : B ↪→ A; our goal is to construct a bijection h : A ≅ B which is equal
to f on some elements and g−1 on others (or possibly both). Let C ⊆ A be the elements on which
h is given by f . Then part of h will be given by the bijection f : C ≅ f [C] ⊆ B. The rest must be
given by the inverse of g : B \ f [C] ≅ g[B \ f [C]] ⊆ A; thus we must find C ⊆ A such that

C = A \ g[B \ f [C]].

C

g[B \ f [C]]

A

f [C]

B \ f [C]

B

f

g

Since C 7→ A \ g[B \ f [C]] is monotone, by Knaster–Tarski 3.6 such a fixed point C exists.

Remark 5.12. For a more informative proof, we may use the transfinite version of Knaster–Tarski
3.167. Note that since g is injective, we may write the above operator more intelligibly as

A \ g[B \ f [C]] = A \ (g[B] \ g[f [C]])

= (A \ g[B]) ⊔ g[f [C]],

which is clearly finitary; thus by Proposition 3.169, the least fixed point C is the ω-union of

∅ ⊆ A \ g[B]

⊆ (A \ g[B]) ⊔ (g[f [A]] \ g[f [g[B]]])

⊆ (A \ g[B]) ⊔ (g[f [A]] \ g[f [g[B]]]) ⊔ (g[f [g[f [A]]]] \ g[f [g[f [g[B]]]]])

⊆ · · · .
This union consists of the red rings on the left below; the resulting bijection h simply switches each
with the green ring inside it, while applying g−1 on the remaining “center”.

A \ g[B]

A

g[B]\g[f [A]]

g[f [A]]\g[f [g[B]]]

. . .

B \ f [A]

B

f [A]\f [g[B]]

f [g[B]]\f [g[f [A]]]

. . .

g

g

g

f

f

Exercise 5.13. Verify that if we instead take the greatest fixed point C of C 7→ A \ g[B \ f [C]], the
bijection h is defined the same way as above except being given by f instead of g−1 on the “center”.
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5.C. Well-orderable cardinals.

Proposition 5.14. For an ordinal α and initial ordinal κ, we have κ ⊆ α ⇐⇒ κ ↪→ α.
In other words, an initial ordinal (not only ̸≅ but) does not inject into any smaller ordinal.
In particular, ordinal and cardinal comparison agree on initial ordinals.

Proof. Clearly, κ ⊆ α =⇒ κ ↪→ α. Conversely, if κ ̸⊆ α, then since ordinals are linearly ordered,
α ⊊ κ; since κ is initial, this means α ̸≅ κ, whence κ ̸↪→ α by Schröder–Bernstein.

Theorem 5.15 (pigeonhole principle). For m,n ∈ N, we have m ≤ n ⇐⇒ m ↪→ n.
In other words, naturals are initial ordinals.

Proof. =⇒ is obvious; we prove ⇐= by induction on n. If n = 0, then clearly m ↪→ n = ∅ implies
m = ∅. Now suppose every m ↪→ n is ≤ n, and let f : m ↪→ n+ 1. If m = 0, then clearly m ≤ n.
Now suppose m > 0, whence m = m′ + 1 for some m′ ∈ N. If f [m′] ⊆ n, then by the IH, m′ ≤ n,
whence m = m′ + 1 ≤ n+ 1. Otherwise, there is some k < m′ such that f(k) = n, whence since f is
injective, f(m′) < n; modify f by swapping f(k), f(m′), and apply the previous case.

Proposition 5.16. If K is a set of initial ordinals, then supK ∈ ON is initial.

Proof. If supK ↪→ α < supK, then α < κ for some κ ∈ K, and κ ≤ supK ↪→ α, contradicting that
κ is initial.

Corollary 5.17. ω is an initial ordinal: ω ̸↪→ n for all n ∈ ω.

Recall also Hartogs’ Theorem 3.144, which we may now restate as

Theorem 5.18 (Hartogs). For every set A, there is a least ordinal η(A) (which is therefore initial),
called the Hartogs number of A, such that η(A) ̸≤ |A|.

Corollary 5.19. For every initial ordinal κ, there is a least successor cardinal κ+ = η(κ) > κ.

Note that this is not to be confused with the successor ordinal (Definition 3.136). For naturals
they agree, but otherwise κ+ is much bigger.

Definition 5.20. ℵα = ωα is the αth infinite initial ordinal. Thus

ℵ0 = ω0 = ω,

ℵ1 = ω1 = ω+,

ℵ2 = ω2 = ω++,

...

ℵω = supn<ω ℵn by Proposition 5.16,

ℵω+1 = ℵ+ω ;

more generally,

ℵα+1 = ℵ+α ,
ℵα = supβ<α ℵβ for limit ordinals α, by Proposition 5.16.

(Usually, people write ℵα when thinking of it as a cardinal, versus ωα as an ordinal.)

Remark 5.21. By Proposition 4.1(iii), every cardinal ≤ an initial ordinal is itself well-orderable.

Corollary 5.22 (over ZF). The Axiom of Choice is equivalent to: cardinals are linearly ordered.

Proof. If Choice holds, then every cardinal is an initial ordinal, which are well-ordered.
Conversely, if a set A is comparable in cardinality with η(A), then since η(A) ̸≤ A, we have

A < η(A), whence A is well-orderable.
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Exercise 5.23. By essentially Proposition 4.1(iv), for a nonempty set A and well-ordered set B,
we have A ↪→ B iff B ↠ A.

Thus for example, a nonempty set A is countable (A ↪→ N) iff it admits a surjection N ↠ A.

Proposition 5.24. Every cardinal is comparable with every natural n ∈ N.

Proof. Suppose |A| is a cardinality not in N; we prove by induction that n ≤ |A| for every n ∈ N.
Clearly 0 = ∅ ↪→ A. Now suppose n ≤ |A|, i.e., there is f : n ↪→ A. Then f [n] ̸= A, hence we may
extend f to an injection n+ 1 ↪→ A by taking any f(n) ∈ A \ f [n].

We thus get the following picture of cardinals in the absence of Choice:

(5.25)

0

1

2finite
cardinals

. .
.

ℵ0

ℵ1
well-orderable cardinals

ℵ2

. .
.

ℵω

ℵω+1

. .
.

κ

2ℵ0

Dedekind-finite cardinals

The well-orderable cardinals, i.e., initial ordinals, form a well-ordered (because ON is well-ordered),
downward-closed (by Remark 5.21) “spine” without an upper bound (by Hartogs). Among them,
the finite cardinals n ∈ ω form an “initial segment” that are actually below everything else (by
Proposition 5.24). Above them, there could be infinite cardinals that are not ≥ ℵ0, i.e., cardinalities
of infinite sets without an infinite sequence, since Dependent Choice is required to construct such
an infinite sequence (Proposition 4.5). Such sets without an infinite sequence are called Dedekind-
finite; the infinite Dedekind-finite sets have Hartogs number ℵ0. Similarly, even if DC holds,
there could be uncountable cardinalities (not ≤ ℵ0, which means > ℵ0 assuming DC) that are
incomparable with ℵ1, which will have Hartogs number ℵ1.
Remark 5.26. In particular, 2ℵ0 , the cardinality of R (see Example 5.34), is usually considered to
be “definably” incomparable with ℵ1. Here “definable” has the same meaning as in Theorem 4.20: it
is not possible to write down an “explicit” injection either way (nor to prove that this is impossible).
Indeed, there is even a theorem saying that ℵ1 and 2ℵ0 are the only two minimal “definable”
uncountable cardinalities!
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5.D. Cardinal arithmetic. In general, given any (say binary) operation ∗ on sets which is functorial
in the sense of Definition 2.68, functoriality implies that ∗ respects the equivalence relation ≅ on V ,
hence descends to an operation on the quotient class of cardinals defined via

|A| ∗ |B| := |A ∗B|.

Definition 5.27. The sum of cardinals is induced by disjoint union (Definition 2.76):

|A|+ |B| := |A ⊔B| =
∣∣{(i, x) ∈ 2× (A ∪B) | (i = 0 and x ∈ A) or (i = 1 and x ∈ B)}

∣∣.
Definition 5.28. The product of cardinals is induced by Cartesian product (Definition 2.32):

|A| · |B| := |A×B|.

Definition 5.29. Exponentiation of cardinals is induced by function sets (Definition 2.48):

|B||A| :=
∣∣BA

∣∣.
(Functoriality is by Example 2.71.)

Remark 5.30. For cardinals represented as initial ordinals κ, λ, these notions must not be confused
with the ordinal arithmetic operations from Section 3.I with the same name!

For + and ·, we at least have that the ordinal operation yields a (typically non-initial) ordinal
whose cardinality is the cardinal operation:

|ordinal κ+ λ| = cardinal κ+ λ,

|ordinal κ · λ| = cardinal κ · λ.
These follow from the rank-based definitions of ordinal +, · from Exercise 3.159. It follows that

ordinal κ+ λ ≥ cardinal κ+ λ,

ordinal κ · λ ≥ cardinal κ · λ.
For exponentiation however, the ordinal power from Exercise 3.163 will usually be much smaller
than the cardinal power! For example, the ordinal power 2ω = sup{1, 2, 4, 8, . . . } = ω is countable,
whereas the cardinal power 2ω is not, by Cantor’s Theorem 2.9 (see also 5.33).

(Note that the cardinal operations do agree with ordinal ones on naturals, since these are all
initial by Theorem 5.15.)

Just as any functorial set operation descends to an operation on cardinals, so does every natural
bijection between two such operations (see Section 2.E) yield an algebraic identity:

Proposition 5.31. The following all refer to cardinal operations:

(a) + and · are commutative and associative, with respective identity elements 0, 1.
(b) · distributes over + and κ · 0 = 0. In particular, κ · n = κ+ · · ·+ κ︸ ︷︷ ︸

n

for n ∈ N.

(c) κλ+µ = κλ · κµ and κ0 = 1. In particular, κn = κ · · ·κ for n ∈ N.
(d) (κ · λ)µ = κµ · λµ and 1µ = 1.
(e) (κλ)µ = κλ·µ and κ1 = κ.

(f) |P(X)| = 2|X|.

Proof. By various canonical bijections. For example, (e) follows from Example 2.81.

We also get various inequalities, derived from natural injections:

Proposition 5.32. Again referring only to cardinal operations:

(a) +, · are monotone (in both arguments).
(b) κ ≤ λ =⇒ κµ ≤ λµ, and κ ≤ λ =⇒ µκ ≤ µλ, unless µ = κ = 0 < λ.
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Proof. Let f : A ↪→ B; then for any C,

A ⊔ C ↪−→ B ⊔ C
(0, a) 7−→ (0, f(a))

(1, c) 7−→ (1, c),

A× C ↪−→ B × C
(a, c) 7−→ (f(a), c),

AC ↪−→ BC

g 7−→ f ◦ g,

which shows |A|+ |C| ≤ |B|+ |C|, |A| · |C| ≤ |B| · |C|, and |A||C| ≤ |B||C|. To show |C||A| ≤ |C||B|:

• If |C| > 0, then pick any c ∈ C; then we have an injection

CA ↪−→ CB

h 7−→

(
x 7→

{
h(f−1(x)) if x ∈ im(f),

c else

)
.

• If |C| = 0 < |A|, then |C||A| = 0 ≤ |C||B|.

• If |B| = 0, then |A| = 0 (since A ↪→ B), so |C||A| = 1 = |C||B|.

Theorem 5.33 (Cantor). For any cardinal κ, κ < 2κ.

Proof. Letting κ = |A|, we have A ↪→ P(A) by a 7→ {a}, but A ̸≅ P(A) by Theorem 2.9.

Example 5.34. We have

R ↪−→ P(Q)

r 7−→ {q ∈ Q | q < r},
P(N) ↪−→ R

A 7−→
∑

n∈A 10−n,

whence
|R| ≤ |P(Q)| = 2|Q| = 2ℵ0 = 2|N| = |P(N)| ≤ |R|,

and so by Schröder–Bernstein,
|R| = |P(N)| = 2ℵ0 > ℵ0.

Example 5.35. We have

2ℵ0 ≤ 3ℵ0 ≤ · · · ≤ ℵℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0

(the last step using that N2 is countable, e.g., by the injections n 7→ (n, 0) and (m,n) 7→ 2m3n).
Thus by Schröder–Bernstein, these cardinals are all equal. For example, |RN| = (2ℵ0)ℵ0 = 2ℵ0 = |R|.

We may also define indexed versions of cardinal operations:

Definition 5.36. For a set I and family of sets (Ai)i∈I , the indexed sum and product of
cardinals are defined via ∑

i∈I |Ai| :=
∣∣⊔

i∈I Ai

∣∣,∏
i∈I |Ai| :=

∣∣∏
i∈I Ai

∣∣.
Exercise 5.37. Check that these are well-defined, i.e., depend only on the cardinalities of the Ai,

34

assuming the Axiom of Choice (why?).

Remark 5.38. Again, for sum only, this is related to the indexed ordinal sum from Exercise 3.159:

|ordinal
∑

γ<β κγ | = cardinal
∑

γ<β κγ ≤ ordinal
∑

γ<β κγ .

Exercise 5.39. Prove indexed analogs of Proposition 5.31. [See Exercises 3.159 and 3.163.]

Exercise 5.40. Prove indexed analogs of Proposition 5.32, assuming the Axiom of Choice (why?).

We will say more about these indexed operations in Section 5.F below.

34See Exercise 2.79. Indeed, they are even invariant under replacing I with an equinumerous copy, provided we
also reindex the Ai’s. More precisely,

∑
and

∏
are functorial on a category called

∫
I∈Set

SetI .
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5.E. Well-ordered cardinal arithmetic. While the above laws of cardinal arithmetic had fairly
concrete “structural” proofs, under Choice things become much more trivial:

Proposition 5.41. For every infinite well-orderable cardinal κ, we have κ+ 1 = κ.

(Here + refers to cardinal sum.)

Proof. We have ℵ0 + 1 = ℵ0, i.e., there is a bijection

ω ⊔ {0} ≅ ω

(0, n) 7→ n+ 1

(1, 0) 7→ 0.

Now since ω ≤ κ, we get a bijection κ ⊔ {0} ≅ κ which is the above together with the identity
function on κ \ ω.

Corollary 5.42. Every infinite initial ordinal κ = ℵα is a limit ordinal.

Proof. For α < κ, either α < ω in which case α+ 1 < ω by definition of ω, or α is infinite in which
case |α+ 1| = |α|+ 1 = |α| ≤ α < κ whence α+ 1 < κ since κ is initial. (Here + means ordinal.)

Exercise 5.43. Show that in general (without Choice), for a cardinal κ, the following are equivalent:

(i) κ+ 1 = κ.
(ii) κ is Dedekind-infinite, i.e., ℵ0 ≤ κ (see (5.25)).

(iii) For any set A with |A| = κ, there is a non-surjective injection A ↪→ A.

Proposition 5.44. Let I be a well-orderable set, (Ai)i∈I be a family of sets. Then∣∣⋃
i∈I Ai

∣∣ ≤∑i∈I |Ai|.

Proof. Map each a ∈
⋃

i∈I Ai to (i, a) ∈
⊔

i∈I Ai for the smallest i such that a ∈ Ai.

Theorem 5.45. For every infinite well-orderable cardinal κ, we have κ2 = κ.35

Proof. By induction. Suppose for all infinite cardinals λ < κ, we have λ2 = λ. Then

κ2 = |κ× κ|
= |
⋃

α<κ(α× α)| by Corollary 5.42

≤
∑

α<κ|α|2 (cardinal sum, by Proposition 5.44)

≤
∑

α<κ|α|2 (ordinal sum, by Remark 5.30)

≤ supα<κ

∑
β<α|β|2 (ordinal sum and sup, by Corollary 5.42 and Exercise 3.159);

but for each α < κ, we have |
∑

β<α|β|2| ≤ |α|3 < κ by the IH (for α ≥ ω) or definition of ω (for

α < ω), whence
∑

β<α|β|2 < κ since κ is initial.

Corollary 5.46. For two well-orderable cardinals κ, λ at least one of which is infinite, we have

κ+ λ = max(κ, λ),

κ · λ = max(κ, λ) if κ, λ ̸= 0.

Proof. WLOG κ ≤ λ, hence λ ≥ ℵ0. Then κ+λ ≤ λ+λ = 2 ·λ ≤ λ2 = λ, and clearly also λ ≤ κ+λ
and κ · λ ≤ λ · λ = λ. If κ > 0, then also λ = 1 · λ ≤ κ · λ.

Corollary 5.47. For an infinite well-orderable cardinal κ, we have κn = κ for every 1 ≤ n ∈ N.

35More precisely, the proof yields an inductive way of defining an explicit injection κ2 ↪→ κ for each κ; hence why
this statement for well-orderable κ does not need Choice.
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The following is a weird application of well-orderability of R, similar in spirit to the “pathological”
constructions using Choice from Section 4, but additionally using a bit of cardinal arithmetic:

Theorem 5.48 (Mazurkiewicz). There exists A ⊆ R2 containing exactly two points on every line.36

Proof. Note that the set L of lines in R2 has cardinality 2ℵ0 = |R|: for example, we have injections

R ↪−→ L
b 7−→ {x = b},

L ↪−→ R3

L 7−→

{
(1,m, b) if L is a nonvertical line y = mx+ b,

(0, 1, b) if L is a vertical line x = b.

Thus, let (Lα)α<2ℵ0 be a transfinite enumeration of L, here assuming that 2ℵ0 is an initial ordinal.

Define a sequence (Aα ⊆ R2)α<2ℵ0 , where each |Aα| ≤ 2, inductively as follows:

• If Lα already contains two points in
⋃

β<αAβ, then Aα := ∅.

• Otherwise, note that |
⋃

β<αAβ| ≤ 2 · |α| < 2ℵ0 , thus also |(
⋃

β<αAβ)2| < 2ℵ0 = |Lα|.
For each pair of distinct points in

⋃
β<αAβ, the unique line through them is not Lα by

assumption, hence intersects Lα in at most one point. Pick one or two (depending on
whether |Lα ∩

⋃
β<αAβ| = 1 or 0) points on Lα not on any such line and not in

⋃
β<αAβ,

and let Aα be those points.

We claim that A :=
⋃

α<2ℵ0 Aα works. Indeed, to check that Lα contains exactly two points in A:
by definition of Aα, Lα ∩

⋃
β≤αAβ contains at least two points. If Lα ∩A contained at least three

points, then there is a least β such that Lα ∩
⋃

γ≤β Aγ contains at least three points, which means

Lα ∩
⋃

γ<β Aγ still contains at most two points. But by definition of Aβ , we would not have either
added a new point to a line that already passes through two existing points, or added two new
points to a line (namely Lα = Lβ) that already had a point.

Another useful consequence of Theorem 5.45 is in the context of finitary monotone set operations
T : P(X) → P(X), in the sense of Proposition 3.169, which recall meant that each x ∈ T (A)
depends on only finitely many elements of A, i.e., T (A) =

⋃
b0,...,bn−1∈A T ({b0, . . . , bn−1}).

Corollary 5.49 (assuming Choice). Let T : P(X)→ P(X) be a finitary monotone set operator,
and κ be an infinite cardinal such that T maps finite sets to sets of size ≤ κ. Then for any A ⊆ X,
we have |T (A)| ≤ max(|A|, κ).

Proof. Since T is finitary, for any A ⊆ X, we have

|A ∪ T (A)| = |A ∪
⋃

n∈N
⋃

b⃗∈An T ({b0, . . . , bn−1})|
≤ |A|+

∑
n∈N

∑
b⃗∈An |T ({b0, . . . , bn−1})|

≤ |A|+
∑

n∈N|A|n · κ
= max(|A|, κ).

Now by induction, each An in the Knaster–Tarski sequence (3.167) obeys the same bound for each
n ∈ N, thus by Proposition 3.169, so does T (A) = Aω =

⋃
n<ω An.

Example 5.50. A Q-vector space X of infinite (well-orderable) dimension κ, or even just with a

generating set of cardinality κ, has cardinality κ. Indeed, T (A) = {⃗0}∪{ax⃗+by⃗ | a, b ∈ Q, x⃗, y⃗ ∈ A}
is clearly finitary and maps finite A to T (A) of size ≤ ℵ0. Similarly for κ-generated group, ring, etc.

Example 5.51. An R-vector space of dimension κ ≥ 2ℵ0 has cardinality κ.

For a generalization replacing “finitary” with larger arities, see TODO.

36It appears to be an open problem whether such a set can be constructed without Choice! (It is known that the
existence of such a set does not imply that R is well-orderable; see [A. Miller, Infinite Combinatorics and Definability ].)
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5.F. Regular cardinals. We’ve shown that finite sums and products of well-orderable cardinals
are trivial. What can we say about the indexed sums and products (Definition 5.36)? We henceforth
work under full Choice, which is needed even in order for the indexed operations to be well-defined.

Proposition 5.52. Let (κi)i∈I be a family of cardinals, such that supi∈I κi ≥ max(|I|,ℵ0). Then∑
i∈I κi = supi∈I κi.

Proof. ≥ is straightforward. For ≤, we have∑
i∈I κi ≤

∑
i∈I supj∈I κj

= |I| · supj∈I κj

≤ (supj∈I κj)
2

= supj∈I κj .

Example 5.53.
∑

n∈N ℵn = supn∈N ℵn = ℵω.

Example 5.54. Clearly any κ =
∑

α<κ 1, hence we need the assumption that supi κi ≥ max(|I|,ℵ0).

Exercise 5.55. Show that more generally,∑
i∈I κi = max(supi∈I κi, |{i ∈ I | κi > 0}|),

provided the RHS is infinite. (A version of this was already used in the proof of Theorem 5.45.)

Corollary 5.56. For an infinite cardinal κ and a family of cardinals (λi)i∈I with |I|, λi < κ,∑
i∈I λi < κ ⇐⇒ supi∈I λi < κ.

Proof. If the RHS above is finite, then clearly so is the LHS; thus one is < κ iff the other is.

Definition 5.57. A cardinal κ is regular if for any family of cardinals (λi)i∈I with |I|, λi < κ, we
have

∑
i∈I λi < κ, or equivalently if κ is infinite, supi∈I λi < κ.

Exercise 5.58. Show that κ is regular iff for any family of sets (Ai)i∈I with |I|, |Ai| < κ, we have
|
⋃

i∈I Ai| < κ.

Example 5.59. 0 is (vacuously) regular.

Example 5.60. 1 is regular: any family of cardinals (λi)i∈I with |I| < 1 must be empty.

Example 5.61. 2 is regular: any family of cardinals (λi)i∈I with |I|, λi < 2 has sum either 0 or
λi < 2 for the unique i ∈ I.

Example 5.62. No 3 ≤ n < ω is regular, since n = (n− 1) + 1.

Remark 5.63. Not everyone agrees on which finite cardinals (if any) are considered regular. (Note
that if we instead take supi∈I λi < κ as the primary definition, then every n < ω except 0 would be
regular.) The definition we have given is the most useful from the perspective of Remark 5.68.

Example 5.64. ℵ0 is regular, being closed under (binary) +. By Exercise 5.58, this means that a
finite union of finite sets is finite.

Example 5.65. Any infinite successor cardinal κ+ is regular: if |I|, λi < κ+, then |I|, λi ≤ κ,
whence

∑
i∈I λi ≤ κ2 = κ < κ+. In other words, a union of ≤ κ sets, each of size ≤ κ, is of size ≤ κ.

Example 5.66. ℵω =
∑

n∈N ℵn is not regular.
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Remark 5.67. The existence of infinite regular cardinals which are not successors, called weakly
inaccessible cardinals, other than ℵ0, is not provable in ZFC. The reason is related to (but
slightly subtler than) Exercise 5.93: for such κ, a “definable subuniverse” of Vκ called Lκ, in which
GCH holds (thus “weakly inaccessible” becomes “strongly inaccessible”), would be a model of ZFC.
See Theorem 5.73.

Remark 5.68. In ordinary mathematics, regular cardinals are precisely the meaningful “arity
bounds” on types of operations we can equip a set with. For example:

• A group, ring, vector space, etc., has only finitary operations, meaning arities < ℵ0.
• For a fixed group G, a G-set (set equipped with group action) has only unary opera-

tions, meaning arities < 2. More things are true about such structures: for example, the
substructures (subsets closed under the operations) are closed under unions, as well as
intersections.
• The Borel sets in R are generated from the open sets via countable Boolean operations,

which have arities < ℵ1.
• It does not really make sense to consider only operations of arities < 3, say, because we can

compose a binary operation ∗ to get a quaternary operation (a ∗ b) ∗ (c ∗ d).
• Similarly, it does not make sense to consider operations of arities < ℵω, because we can

compose a countable operation with ones of arities ℵ0,ℵ1,ℵ2, . . . to get an ℵω-ary operation.
• For any regular cardinal κ, there are good notions of κ-Borel set (ones built from intervals

via Boolean operations of size < κ), κ-ary first-order logic Lκω (with conjunctions
∧

and
disjunctions

∨
of size < κ), etc.

We may formalize this as follows. Call a monotone set operator T : P(X)→ P(X) < κ-ary37 if

T (A) =
⋃

B⊆A
|B|<κ

T (B),

i.e., whenever x ∈ T (A), then x ∈ T (B) for some B ⊆ A with |B| < κ.

Exercise 5.69. Let κ ≥ 2 be a cardinal, T : P(X)→ P(X) be a < κ-ary monotone set operator.

(a) Show that if κ is regular, then for any A ⊆ X, the transfinite sequence from Theorem 3.167
stabilizes at T (A) = Aκ (cf. Proposition 3.169).

(b) Show that this fails if κ is not regular. [Consider a suitable T on X = κ+ 1.]

Exercise 5.70. How badly can regularity fail? For a limit ordinal α, the cofinality of α is

cf(α) := min{ρ∈A [A] | A ⊆ α, supA = α}.

(a) Compute cf(ω), cf(ω + ω), cf(ω2), cf(ωω), cf(ω2
1), cf(ωω

1 ) (ordinal exponentiation).
(b) Show that

cf(α) = min{|A| | A ⊆ α, supA = α}.
In particular, cf(α) is always an initial ordinal such that ω ≤ cf(α) ≤ |α|.

(c) Thus, cf(α) = α iff α is a regular cardinal.
(d) Show that cf(cf(α)) = cf(α), i.e., cf(α) is always a regular cardinal.
(e) Show that for an infinite cardinal κ,

cf(κ) = min{|I| | |I| ≤ κ, ∀i ∈ I (λi < κ),
∑

i∈I λi = κ}

where the λi < κ are cardinals.
(f) Show that if α is a limit ordinal, then cf(ℵα) = cf(α).
(g) Thus if κ is an uncountable weakly inaccessible cardinal, then κ = ℵκ. The converse is false.

37This usually gets abbreviated to “κ-ary”, leading to potential confusion since κ ̸< κ. For example, “2-ary”, i.e.,
< 2-ary, means nullary or unary, but not binary.
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5.G. Powers, products, and inaccessibility. Regularity is also highly relevant to powers and
indexed products. Recall that by Cantor’s Theorem 5.33, κ < 2κ for every κ; thus 2κ ≥ κ+.

Continuum Hypothesis 5.71 (CH). |R| = 2ℵ0 = ℵ1.

Generalized Continuum Hypothesis 5.72 (GCH). For every infinite cardinal κ, 2κ = κ+.

Theorem 5.73 (Gödel). If ZFC is consistent, then so is ZFC + GCH, i.e., GCH cannot be disproved.

Proof idea. Take the ZFC universe V . Roughly speaking, GCH might fail because for a set X,
Comprehension says it must have certain subsets; but it may have many more than just those.
Gödel constructed a subuniverse L ⊆ V , the constructible universe, via an inductive procedure
analogous to the cumulative hierarchy (Section 3.K) but adding at each level only those subsets of
the previous level demanded by Comprehension, i.e., which are definable by a formula ϕ(x). Since

there are only countably many formulas, each X ∈ L will have the least possible 2|X| = |X|+.

Theorem 5.74 (Easton). Assume ZFC is consistent. Let F be any (proper class) function from
infinite regular cardinals to infinite regular cardinals such that

(i) κ ≤ λ =⇒ F (κ) ≤ F (λ);
(ii) κ < F (κ).

Then it is consistent with ZFC that 2κ = F (κ) for all infinite regular κ.

Example 5.75 (Cohen). In particular, CH cannot be proved from ZFC: we could declare 2ℵ0 := ℵ2.

Remark 5.76. The assumption of regularity in Easton’s Theorem 5.74 may seem to come from
nowhere, but it is needed. For instance, we cannot have 2ℵ0 = ℵω; see Exercise 5.82(e). The possible
behaviors of cardinal exponentiation at singular (i.e., non-regular) cardinals is quite subtle, and is a
focus of modern set theory research (see e.g., Shelah’s PCF theory).

Easton’s theorem tells us that in ZFC, expressions of the form 2κ essentially cannot be “evaluated”
into any simpler form; they behave like “indeterminates”, whose values may vary from universe to
universe. But given these “indeterminates”, we can evaluate many other powers and products.

Proposition 5.77. If λ is an infinite cardinal and µ ≤ κ ≤ µλ, then κλ = µλ.

Proof. µλ ≤ κλ ≤ (µλ)λ = µλ
2

= µλ.

This allows us to “evaluate” κλ as long as κ is not too big relative to λ. Namely, if 2 ≤ κ ≤ 2λ,
then κλ = 2λ. More generally, we may inductively “evaluate” κλ in terms of µλ for µ < κ, unless
the cardinals < κ are closed under (−)λ. In that exceptional case, we in particular have κ > 2λ > λ.

Proposition 5.78. If κ is regular, λ is infinite, κ > λ, and µλ ≤ κ for all µ < κ, then κλ = κ.

Proof. Since κ > λ is regular, every function f : λ→ κ must land in sup+
α∈λ f(α) < κ. Thus

(cardinal power) κλ = |
⋃

α<κ α
λ| (set of functions)

≤
∑

α<κ|α|λ (cardinal power)

≤ κ2 = κ.

Example 5.79. For 2 ≤ κ ≤ 2ℵ0 , we have κℵ0 = 2ℵ0 (cf. Example 5.35). In particular, ℵℵ0
1 = 2ℵ0 .

If CH holds, then this is = ℵ1 < ℵ2, whence the cardinals < ℵ2 are closed under (−)ℵ0 , whence

ℵℵ0
2 = ℵ2, whence similarly ℵℵ0

3 = ℵ3, etc., up to ℵℵ0
ω which we can’t compute since ℵω isn’t regular.

If CH fails, then 2ℵ0 ≥ ℵ2, whence ℵℵ0
2 = 2ℵ0 . Similarly to the case of CH, if now 2ℵ0 = ℵ2, then

ℵℵ0
3 = ℵ3, ℵℵ0

4 = ℵ4, etc.

Exercise 5.80 (Hausdorff formula). For κ ≥ 2 and λ ≥ ℵ0, we have (κ+)λ = max(κλ, κ+).
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Exercise 5.81. The above calculations may be generalized to singular cardinals κ, taking their
cofinality (Exercise 5.70) into account; however, we can no longer reduce all powers to powers of 2.

(a) Generalize Proposition 5.78 to: if cf(κ) > λ ≥ ℵ0 and µλ ≤ κ for all µ < κ, then κλ = κ.

(b) Show that if cf(κ) ≤ λ and µλ ≤ κ for all µ < κ, then κλ = κcf(κ) =: (κ)ג (pronounced
“gimel κ”, the third letter of the Hebrew alphabet).

(c) Conclude that κλ for κ ≥ 2 and λ ≥ ℵ0 may be “evaluated” by induction on κ, as follows:

κλ =


2λ if κ ≤ 2λ,

(µ)ג if 2λ < κ and there is a least ℵ0 ≤ µ < κ such that κ ≤ µλ,
(κ)ג if µλ < κ for all µ < κ, and cf(κ) ≤ λ,
κ if µλ < κ for all µ < κ, and cf(κ) > λ.

This allows us to “compute” κλ recursively, provided we know the values of 2λ and (µ)ג
(and can complete the transfinite process of computing µλ for all µ < κ, as well as the more
“elementary” transfinite computation of cf(κ)).

(d) Show that 2λ may in turn be reduced to ג by induction on λ as follows:

2λ =


(λ)ג if λ is regular,

supν<λ 2ν if λ is singular and this sup is achieved,

supν<λ)ג 2ν) if λ is singular and this sup is not achieved.

Thus all cardinal exponentiation may be reduced to .ג

The gimel function ג may appear somewhat strange: unlike the continuum function λ 7→ 2λ, it
does not correspond to any natural set operation (like powerset). Much of its study is based on the
following generalization of Cantor’s Theorem 2.9:

Exercise 5.82 (König’s theorem).

(a) Let I be a set, (Xi)i∈I , (Yi)i∈I be families of sets. Suppose that for each i, there is no
surjection Xi ↠ Yi. Then there is no surjection⊔

i∈I
Xi −↠

∏
i∈I

Yi.

[Copy the proof of Theorem 2.9.]
(b) Thus for families of cardinals (κi)i∈I , (λi)i∈I , if κi < λi for each i, then∑

i∈I
κi <

∏
i∈I

λi.

(c) Deduce Cantor’s Theorem 2.9.
(d) Deduce that λ < cf(κλ) for all κ ≥ 2 and λ ≥ ℵ0.
(e) Conclude that 2ℵ0 ̸= ℵω.
(f) Conclude that κ < (κ)ג for all κ ≥ ℵ0.
(g) Conclude that under GCH, cardinal exponentiation is much simpler:

κλ =


λ+ if κ ≤ λ,
κ+ if cf(κ) ≤ λ < κ,

κ if cf(κ) > λ.

(h) Conclude that GCH is equivalent to: (κ)ג = κ+ for all κ ≥ ℵ0.
For more information on cofinality, the gimel function, GCH, etc., see [T. Jech, Set Theory, Ch. 5].

Concerning indexed products
∏

i∈I κi in general, we may reduce them to powers:
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Proposition 5.83. Let (κi)i∈I be a family of nonzero cardinals, such that for each i, we have
|{j ∈ I | κj ≥ κi}| = |I|. Then ∏

i∈I κi = (supi∈I κi)
|I|.

Proof. ≤ is straightforward; we show ≥. WLOG I = |I| is an initial ordinal. If I is finite, both
sides are 1 (if I = 0) or maxi κi; so assume I is infinite. Let p : I × I ≅ I be a bijection. Define
q : I × I ↪→ I by induction on p(i, j) as follows: q(i, j) ∈ I is least so that

κq(i,j) ≥ κj , q(i, j) ̸= q(i′, j′) ∀p(i′, j′) < p(i, j);

this is possible because by assumption, there are I-many κ’s which are ≥ κj , while there are only
|p(i, j)| < I-many (i′, j′)’s with p(i′, j′) < p(i, j). Then because each κ ̸= 0,∏

i∈I κi ≥
∏

i∈im(q) κi

=
∏

(i,j)∈I×I κq(i,j)

≥
∏

i∈I
∏

j∈I κj

≥
∏

i∈I supj∈I κj

(using various laws for indexed products from Exercises 5.39 and 5.40).

Example 5.84.
∏

n<ω ℵn = ℵ0 · ℵ1 · ℵ2 · · · · = ℵℵ0
ω .

Example 5.85.

ℵ0

⏞2 · 2 · · · · · ℵω · ℵω = 2ℵ0 · ℵω is a product of ℵ0 many cardinals ≤ ℵω, which may
however be strictly less than ℵℵ0

ω , e.g., if CH holds (see Example 5.79 and Exercise 5.82(f)).

In this example, we have a product
∏

i∈I κi where most of the κi’s are bounded below supi κi;
we may then reduce inductively to computing a product of smaller cardinals

∏
j∈J κj where

sup+
j∈J κj < sup+

i∈I κi, as well as a smaller product
∏

i∈I\J κi where J ⊆ I with |I \ J | < |I|, and

then multiplying these two together.

Exercise 5.86. Verify that this procedure works in general: we may reduce the computation of an
arbitrary indexed product

∏
i∈I κi to powers and binary products (i.e., max), by lexicographical

induction on (|I|, sup+
i∈I κi).

We now consider cardinality bounds closed under powers and/or indexed products, analogously
to how regularity amounts to closure under sums/unions:

Definition 5.87. A cardinal κ is a strong limit if it is infinite38 and:

• for any λ < κ, we have λλ < κ;
• equivalently, for any λ, µ < κ, we have λµ < κ;
• equivalently, for any sets A,B of size < κ, we have |AB| < κ;
• equivalently, for any λ < κ, we have 2λ < κ;
• equivalently, for any set A of size < κ, we have |P(A)| < κ.

By Cantor’s theorem, these imply that κ is a limit cardinal, i.e., 0 < κ and λ < κ =⇒ λ+ < κ.

Example 5.88. ℵ0 is a strong limit.

Example 5.89. The next strong limit is sup{ℵ0, 2ℵ0 , 22
ℵ0 , 22

2ℵ0

, . . . }.

Remark 5.90. The beth cardinals are ℶ0 := ω, ℶ1 := 2ω, ℶ2 := 22
ω
, . . . , ℶα := supβ<α 2ℶβ .

Thus, for any limit ordinal α, ℶα is a strong limit cardinal (and ℵα is a weak limit cardinal).
The GCH can be stated as: ℵα = ℶα.

38I suppose that in some contexts, it may also be useful to regard 2 as a strong limit.
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While regularity means that sets of size < κ are closed under
⋃

, strong limit means they are
closed under P; these are the two fundamental set-theoretic operations. Combining them yields

Definition 5.91. A cardinal κ is strongly inaccessible if it is regular and a strong limit.

Exercise 5.92. Show that κ is strongly inaccessible iff it is infinite and for any family of cardinals
(λi)i∈I with |I|, λi < κ, we have

∏
i∈I λi < κ.

As the name suggests, strongly inaccessible cardinals are called such because they are so large
that other than ℵ0, none of them can be constructed in ZFC. This is because the “things below
them” are closed under everything that ZFC requires; thus if we had a strongly inaccessible κ, we
may simply truncate the universe at κ to get a smaller universe without any strongly inaccessibles.
(Similarly, ℵ0 could not be constructed either; we had to declare its existence via the Axiom of
Infinity, without which Vω could as well be the entire universe.)

Exercise 5.93. A set A is hereditarily of size < κ if it, its elements, its elements’ elements, etc.,
are all of size < κ. In other words, every set in the transitive closure

⋃
{A} (Definition 3.175) is of

size < κ. (Recall Exercise 3.186.) Let Hκ be the class of all sets hereditarily of size < κ.

(a) For which n ∈ N is Hn ⊆ Vn?
(b) Prove that for κ ≥ ℵ0, we have Hκ ⊆ Vκ iff κ is regular. In particular, Hκ is a set for all κ.
(c) Prove that for κ ≥ ℵ0, we have Hκ = Vκ iff κ is strongly inaccessible.
(d) Verify that Hκ = Vκ for strongly inaccessible κ has the following properties:

(i) Hκ is transitive.
(ii) ∅ ∈ Hκ, and a, b ∈ Hκ =⇒ {a, b} ∈ Hκ.

(iii) If I ∈ Hκ and (Ai)i∈I ∈ HI
κ, then

⋃
i∈I Ai ∈ Hκ.

(iv) A ∈ Hκ =⇒ P(A) ∈ Hκ.
(v) A ⊆ B ∈ Hκ =⇒ A ∈ Hκ.

(vi) For any A ∈ Hκ and function f : A→ Hκ, we have f [A] ∈ Hκ.
(vii) A ∈ Hκ =⇒

⋃
A ∈ Hκ.

(viii) A,B ∈ Hκ =⇒ A×B,BA ∈ Hκ.
(ix) If I ∈ Hκ and (Ai)i∈I ∈ HI

κ, then
∏

i∈I Ai,
⊔

i∈I Ai ∈ Hκ.
(x) If κ is uncountable, then N ∈ Hκ.

(e) Conclude that Hκ satisfies ZFC− Infinity (assuming the real universe does), and ZFC if κ is
uncountable.

(f) Note that for A ∈ Hκ, not only do we have P(A) ∈ Hκ, but also that Hκ thinks that P(A)
is the powerset of A. Explain why this might not be the case if, say, we did not have (i).

(g) Verify that for any A ∈ Hκ, Hκ thinks that A is an ordinal iff A is indeed an ordinal.
(h) Verify that for any A ∈ Hκ, Hκ thinks that A is an initial ordinal iff A is indeed such.
(i) Verify that for any A ∈ Hκ, Hκ thinks that A is a strongly inaccessible cardinal iff A is

indeed such.
(j) Conclude that Infinity cannot be proved from ZFC − Infinity, and that the existence of a

strongly inaccessible cardinal cannot be proved from ZFC.
(k) Prove that sets U with the above properties (i)–(iv) (called Grothendieck universes) are

precisely all Hκ for strongly inaccessible κ.

Grothendieck universes are used in areas of math that need to work with “mathematical universes”
as mathematical objects, e.g., category theory (the category of all groups, etc.).
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